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Forced Oceanic Waves

S. G. H. PHILANDER

Geophysical Fluid Dynamics Program, Princeton University, Princeton, New Jersey 08540

This paper concerns the linear response of the ocean to forcing at a specified frequency and wave
number in the absence of mean currents. It discusses the details of the forcing function, the general
properties of the equations of motion, and possible simplifications of these equations. Two representa-
tions for the oceanic response to forcing are described in detail. One solution is in terms of the normal
modes of the ocean. The vertical structure of these modes corresponds to that of the barotropic and
baroclinic modes; their latitudinal structure corresponds to that of inertia-gravity and Rossby waves.
These waves are eigenfunctions of Laplace’s tidal equations (LTE) with the frequency as eigenvalue. The
description in terms of vertically standing modes is particularly useful if the forcing is nonlocal, because
only these modes can propagate into undisturbed regions. The principal result is that it is extremely
difficult for baroclinic (but not barotropic) disturbances to propagate horizontally away from a forced
region. Instabilities of the Gulf Stream excite disturbances that are confined to the immediate neighbor-
hood of the current; disturbances due to instabilities of equatorial currents do not propagate far
latitudinally. A second representation of the oceanic response to forcing is in terms of vertically propagat-
ing, or vertically trapped, latitudinal modes. These modes are eigenfunctions of LTE with the equivalent
depth & (not the frequency) as eigenvalue. Both positive and negative eigenvalues / are necessary for
completeness. The modes with / > 0 consist of an infinite set of inertia-gravity waves and a finite set of
Rossby waves which either propagate vertically or form vertically standing modes. The latitudinally
gravest modes are equatorially trapped and have been observed in the Atlantic and Pacific oceans. The
modes with # < 0 are necessary to describe the oceanic response to nonresonant forcing. In the vertical
this response attenuates with increasing distance from the forcing region. Because of the shallowness of
the ocean the large eastward traveling atmospheric cyclones in mid-latitudes and high latitudes force a
response down to the ocean floor. Interaction with the bottom topography will result in smaller-scale

disturbances and will affect the frequency spectrum of the response when bottom-trapped waves are

excited.
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A.

Practically all oceanic motion is in (direct or indirect) re-
sponse to atmospheric forcing. In the past, interest has cen-
tered on the excitation of waves with inertial and shorter
periods on the one hand and on the generation of nearly steady
oceanic currents on the other hand. Recently, attention has
focused on the frequency band between these extremes primar-
ily because of the discovery of energetic ‘eddies,” in this fre-
quency band, in various parts of the oceans. Since the atmo-
sphere forces the ocean at all frequencies, particularly
subinertial frequencies (see Figure 1 and Byshev and Invanov
[1969]), it is of importance to know to what extent these
oceanic transients are atmospherically forced. In this paper we

INTRODUCTION

Copyright © 1978 by the American Geophysical Union.

Paper number 7R0826.
0034-6853/78/017R-0826$06.00

15

investigate the response of the ocean to forcing at different
frequencies and wave numbers by reexamining the theory of
linear waves in a stratified rotating thin spherical shell of fluid.
The oceanic response to forcing is usually described in terms
of the natural modes of the ocean: standing baroclinic modes
and the barotropic mode for the vertical structure and inertia-
gravity and Rossby (planetary) waves for the horizontal struc-
ture. These modes can be used to describe the oceanic response
to (nearly) any forcing because they form a complete set.
Whether this representation of the solution is a convenient and
useful one depends on the nature of the forcing. For example,
this representation readily provides information concerning
the propagation of energy away from a localized forced region.
This is so because the natural modes of oscillation satisfy the
unforced equations of motion. The description in terms of the
natural modes is also valuable when these modes play a central
role in the adjustment of the ocean from one steady state to
another. Rossby waves play such a role when there is a sudden
change in the intensity of the (otherwise)/steady winds that
drive the oceanic circulation. Except for the external mode
these waves travel so slowly in mid-latitudes and high latitudes
that it takes them several years to propagate across an ocean
basin. It follows that the time scale for the baroclinic adjust-
ment of the North Atlantic Ocean to a sudden change in wind
conditions is of the order of decades [Veronis and Stommel,
1956]. In low latitudes, on the other hand, planetary waves
travel much more rapidly, so equatorial oceans take of the
order of weeks to adjust to a change in the winds [Lighthill,
1969]. These considerations are particularly relevant to the
northwestern part of the Indian Ocean. There the onset of the
monsoons can often be described as a sudden change from one
nearly steady state to another nearly steady state [Fieux and
Stommel, 1977]. Elsewhere, however, the ocean is forced con-
tinuously over a range of spatial and temporal scales. The
precise range of these scales determines whether or not the
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Fig. 1. Frequency spectrum of the surface winds at Caribou,

Maine (47°N, 68°W). This spectrum is typical for latitudes poleward
of 40°. Energy in the 2- to 10-day band is due to eastward traveling
cyclones [after Oort and Taylor, 1969].

natural modes are important in the oceanic response and
therefore whether or not a description in terms of these modes
is useful.

Rossby waves are excited directly in the ocean only if the
frequency-wave number range of the forcing function coin-
cides with the shaded part of Figure 2. A recent analysis of the
surface winds by Willebrand [1977] has shown that the most
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Fig. 2. The shaded region shows. the frequency-zonal wave num-
ber range where Rossby waves are possible. The solid lines correspond
to the four gravest meridional modes which have the highest frequen-
cies (for a given s), according to (B9). Free Rossby waves, which can
propagate away from a localized disturbance, have much lower fre-
quencies for a given s (see section E).

energetic fluctuations of the winds are associated with large
eastward traveling cyclones, These disturbances, which have
time scales of from 2 to 10 days, force the ocean in the right-
hand (unshaded) part of Figure 2. Measurements that show a
correlation between fluctuations of oceanic currents and local
atmospheric storms [J. Meincke, unpublished manuscript,
1975; Taylor et al., 1977; Baker et al., 1977] indicate that the
response to such storms can be large. Further indirect evidence
of forced (as opposed to freely propagating) oceanic waves
comes from measurements of the kinetic energy spectrum in
the oceans. The spectra all have a peak at the inertial period.
At slightly lower frequencies, energy levels (below the surface
layers of the ocean) drop sharply, whereafter there is an in-
crease in energy levels as the frequency decreases further. This
feature of the spectra is consistent with the presence of forced
waves (which have amplitudes that decay exponentially in the
vertical) at subinertial frequencies (see section H). It will
clearly be of value to have a description of the oceanic re-
sponse in which it is explicit that in certain frequency ranges,
no freely propagating waves are excited. Section D of this
paper contains such a description, It is complementary, and
not necessarily preferable, to the description in terms of the
natural modes of oscillation.

We have indicated that a description in which the existence
of vertically standing baroclinic modes is not assumed may be
useful in mid-latitudes and high latitudes. Such a description is
also useful in the tropics. Tyabin and Sleptsov-Shevlevich
[1975] find that the oceanic response to atmospheric distur-
bances coming off northwest Africa is trapped above the
thermocline. Observations of equatorially trapped waves in
the Atlantic [Weisberg et al., 1977] show that they are down-
ward propagating, not vertically standing, modes. In the Pa-
cific Ocean, on the other hand, Wunsch and Gill [1976] have
argued that peaks in sea level spectra correspond to resonant,
first baroclinic mode equatorially trapped waves. This leads us
to investigate the factors that can prevent the establishment of
standing baroclinic modes.

This paper is organized as follows: The equations of motion
and different methods for their solution are outlined in section
B; in section C, which concerns the forcing function, it is
pointed out that at low frequencies the curl of the wind stress is
the only important term but at higher frequencies there are
additional terms; in sections D and E the equations of motion
are solved in two different but complementary ways; sections F
and G concern the effects of coastal boundaries and of bottom
topography, respectively; the implications of the various re-
sults are presented in section H; some of the limitations of the
linear theory presented here are described in section I; and
section J summarizes the principal results. Appendix B has a
discussion of approximations to Laplace’s tidal equations.

B. EQUATIONS OF MOTION

We consider linear waves in a rotating stratified spherical
shell of fluid in which there are no mean currents. It is assumed
that the motion is described by the following equations:
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density = p, + p(z) + p(6, ¢, z, 1)

pressure = —pogz — fi;g dz + p@, ¢, z,t)

and the various symbols are as defined in the notation list. The
wind stress <(z), which has eastward and northward com-
ponents 7* and 77, respectively, is regarded as a body force in a
mixed surface layer of depth D and is identically zero below
that layer. The boundary conditions are the following:

Ocean floor

w=20 at z= —H (2a)

Ocean surface

z2=0 (2b)

where PA is an imposed atmospheric pressure fluctuation. We
also require that the solutions be bounded at the poles (8 = 0
w) or that the meridjonal velocity component vanish at coasts
along circles of latitude.

Miles [1974] discusses in detail the conditions under which
equations (1) are valid. These equations, together with the
above boundary conditions, apparently constitute an ill-posed
problem for certain ranges of the frequency ¢ of the motion.
This is fortunately not so when

—pogw + P; = PA, at

0 <20 <K N

which is the range of parameters that interests us.

Assume solutions of the form e/*$-°*, where the frequency
o is always positive and the zonal wave number s is positive
(negative) for eastward (westward) propagating waves. Equa-
tions (1) can now be reduced to the single equation

200 (1 P\ _
L(P) + 4Q% (Nz az‘)"F‘ 3)

where F, is the forcing function and

1 a 1 0
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‘+ A? — cos?f (sin g~ o L -55)}
If we make the 8 plane approximations (see Appendix B), then

a single equation for the mendlonal velocity component can
readily be derived:

B R e

a. Properties of the governing equations.
are as follows: :

1. Between the circles of latitude given by cos 6 < ¢/29Q the
set of equations (1) is hyperbolic. The characteristics can be
expressed in terms of elliptic integrals [Miles, 1974]. The ap-
proximate expressions for the two families of characteristics
on an equatorial 8 plane are

These properties

1/2 2
%(‘72 o 5’)’2) + -925- arcsin (_y_) f N dz = const

(%)

These curves are plotted for different values of ¢ and N in
Figure 3. When the stratification is constant, the character-
istics are essentially straight lines except in the vicinity of the
inertial latitudes, where the cusps imply reflections. An in-
crease in the stratification is seen to result in characteristics
that are more horizontal; this happens in the thermocline. In
the deep ocean, however, the characteristics are practically
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Fig. 3. (Top) Characteristics of (5) for ¢ = 27/(2.5 days) and N =
const. = 2 X 1072 s~!, (Middle) Characteristics for ¢ = 27x/(2.5 days)
and N as observed in the equatorial Atlantic. The dashed line is a plot
of N, which has a maximum value of 2 X 10~? s~* at a depth of 87 m.
(Bottom) Characteristics for ¢ = 27/(5 days) and N as observed. The
central vertical line is the equator.
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Fig. 4. Isolines of (a) [(f* — ¢?)/(k* + Bk/a)N?]"* and (b) [K* +
(Bk/a)1~** in units of 1 km as a function of frequency ¢ and zonal
wave number k as evaluated at latitude 40°N. (The highest frequency
in Figure 4a is the inertial frequency at this latitude.) The shaded
region in Figure 4b is bounded by the curve k = —f/g, where § is
evaluated at 40°N. The dashed curve, which shows the same curve
when £ is evaluated at the equator, coincides with the boundary of the
shaded region of Figure 2 for large values of s.

vertical. Comparison of the middle and bottom parts of Figure
3 shows that an increase in frequency increases the vertical

slope of the characteristics. The implications of this as regards-

the global generation of inertia-gravity waves are discussed in
section H.

" 2. Poleward of the inertial latitudes (where cos 8 = ¢/22Q),

(3) and (4) are elliptic. The character of (4), which is an

approximation to (3), is determined by the sign of the quantity .

= k? + Bk/o

The shaded region of Figure 4 shows where ¢ is negative at
subinertial frequencies when (8 is calculated at latitude 40°N.
(The dashed line shows how this area increases if 8 is evaluated
at the equator.) If ¢ is negative, then (4) is similar to the
Helmholtz equation. Let us consider the case N = const and
regard f and @ as constants. Write

V=N § = o
and regard the ocean’as unbounded. Green’s function for (4)
can then be written
G = itH/"(QR)
where '
0% = —(k* + Bk/a)(N?*/f*) > 0

R is the radial distance from the source point (7o, {o), and Hy'"
is a Hankel function of the first kind. For large R,

G ~ (ZT/QR)llzet(QRHr/A)

This implies that a point source in the interior of the ocean will
radiate cylindrical waves. We anticipate that these are Rossby
waves. The manner in which-these waves radiate is to be
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contrasted with the propagation of inertia-gravity waves along
characteristics. This Green function is valid if f and 8 are
treated as constants. In the case of variable f, Rossby waves,
like inertia-gravity waves, have turning latitudes beyond which
they cannot radiate.)

3. Poleward of the inertial latitudes the response of the
ocean to a forcing that has frequency ¢ and zonal wave num-
ber k such that ‘

0° = [k* + (k/o)BYNY/T?) > 0

is trapped, both vertically and horizontally, around the forcing
region. This is evident from the Green function

1/2

Ko(QR) (2 QR) e%%  forlargeR  (6)
(This Green function is valid if f, 8, and N are regarded as
constants and if the ocean is assumed to be unbounded.)
Isolines of the horizontal e folding distance f/NQ as a function
of o and k are shown in the unshaded part of Figure 4b. The
continuation of these contours to higher frequencies (i.e., the
domain of Figure 4a) is simply straight vertical lines. Isolines
of the vertical e folding distance (f* — ¢%)"/?/NQ as a function
of k and ¢ are shown in Figure 4a. The contours in Figure 4b
are a continuation of those in Figure 4a (but not vice versa)
provided the numerical values are multiplied by f/N. The |
results are of course invalid should the e folding depth exceed
the depth of the ocean. From Figure 4 we infer that the
response of the ocean to forcing at frequencies slightly less
than the inertial frequency is strongly trapped in the vertical.
Hence energy levels in the deep ocean, but not in the surface
layers, will drop sharply as the frequency decreases from
slightly above to slightly below the inertial frequency. As the
frequency decreases further, the forcing penetrates to greater
depths—soon right to the ocean floor—so that energy levels at
depth increase. Eastward propagating disturbances with very
low frequencies (¢ — 0) are again strongly trapped in the
vertical. The same is true of the oceanic response to atmo-
spheric storms with small horizontal dimensions. (Some of
these results were obtained by Veronis and Stommel [1956].)
The method by which these results were obtained here is of
limited validity. (The parameters f, 8, and N have all been
regarded as constants.) In the subsequent sections of this
paper these constraints will be relaxed. By separating variables
we shall obtain two representations for the solution. Each
representation has advantages and disadvantages, but they
fortunately complement each other.

b. Separation of variables. Write
usiné ()}
ivsinf. | = 2QaZ(z)e¢=9 V(9) (7a)
P 2Qp,aP(8)
w iP(@) ]
- W(z)e =) [ B b
[ ’ ] APl [5.PO))/o ke

and assume for the moment that equations (1) are homoge-
neous; then the vertical structure of the solution is described
by

NZe
Wt 4gog =0 (%a)
or
2 (1 62) € -
oz (N; az ¥ 49%q? Zry - (8b)
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where
-, 200a 0Z
W i
The boundary conditions are
W=0 o Z,=0 z=—-H (9a)
. A0 N, &
w, 492a,W 0 or Z.+ . Z=0 z=0 (9)

The latitudinal structure is described by Laplace’s tidal equa-
‘tion (LTE)

L(P)—eP =0 (10)

or by an equivalent equation for the meridional velocity com-
ponent (see Appendix B). On a 8 plane this equation is

@ ,_ﬂ_f_) _
W(gh p-B Ly

There are (at least) two ways in which equations (1) can be
solved. One way is to solve equation (8) first; thus one obtains
a complete set of eigenfunctions W, (or Z,) and eigenvalues
en. If the forcing function is a body force (and not an imposed
surface pressure, for example) and if its vertical and latitudinal
dependencies are separable, then its vertical structure can be
expanded in a series of these vertical modes. It then remains to
solve (10) for given values of ¢ (= €,) and with the appropriate
component of the forcing function on the right-hand side of
the equation. If we rewrite the eigenvalues ¢, of the Sturm-
Liouville problem (equations (8) and (9)) as

€, = 4Q%%/gh,

then the homogeneous equation (10) is Laplace’s tidal equa-
tion with the actual depth H of the ocean replaced by an
equivalent depth h,. The vertical structure equation thus deter-
mines the equivalent depths associated with the baroclinic
modes. (We shall find that all the 4, are positive.) The solution
to the inhomogeneous version of (10) can be expressed in
terms of the eigenfunctions of the homogeneous equation (10).
The eigenvalue of this equation is the frequency \. The eigen-
functions are referred to as Hough functions in honour of
Hough [1898], who solved Laplace’s tidal equations for small
values of ¢, (large values of h,).

Equations (1) can alternatively be solved by first determin-
ing the eigenfunctions of LTE, with the constant of separation
¢, however, regarded as the eigenvalue. The forcing function
can then be projected onto these latitudinal modes, and it
remains to solve an inhomogeneous version of the vertical
structure equation (equation (8)) for various given values of e.
It is clear from (8) that for positive values of e the solution can
be interpreted as propagating waves, but for negative values of
¢ the response is vertically trapped near the forcing region. The
parameter ¢~ V/? is a measure of the vertical wavelength.

The first method, in which the solution is expressed in terms
of standing vertical modes, is commonly used in studies of the
response of the ocean to atmospheric forcing. The appeal of
this method is its simplicity: given the mean Viisili frequency
of the oceans (as a function of depth), it is immediately pos-
sible to calculate the vertical modes without having to specify
the forcing function (provided it can be regarded as a body
force in a mixed surface layer). The representation of the
solution obtained in this manner readily provides information

(1) -

about the horizontal structure of the response of the ocean to
atmospheric forcing. However, since practical considerations
dictate that all but the barotropic and first few baroclinic
modes be disregarded, it is difficult to obtain information
about motion that is vertically trapped near the forcing region
or that is vertically propagating. The measurements of Sanford
[1975] and Weisberg et al. [1977] give evidence of vertically
propagating waves in mid-latitude and equatorial regions, re-
spectively. Tyabin and Sleptsov-Shevlevich’s [1975] analysis of
the response of the ocean to atmospheric storms coming off
Africa indicates that this response is vertically trapped near the
forcing region. These measurements suggest that under certain
conditions it is impossible to describe the oceanic response in
terms of one or two standing vertical modes.

Atmospheric tides [Chapman and Lindzen, 1970] and forced
atmospheric waves of lower frequencies [Holton, 1975] are
studied by projecting the forcing function onto vertically prop-
agating latitudinal modes. These modes are eigenfunctions of
LTE when ¢ is the eigenvalue. The modes and associated
eigenvalues are confusingly referred to as Hough functions
and equivalent depths, respectively. (This set of eigenfunctions
is very different from the set that is obtained from LTE when
the frequency is the eigenvalue.) The complete set of eigen-
functions and eigenvalues includes both positive and negative
‘equivalent depths’ [Dikii, 1965]. This is to be contrasted with
the eigenvalue problem posed by (8) and (9), which yield
positive equivalent depths only. The physical significance of
the term negative equivalent depth is not immediately clear—it
suggests that the ocean is unstably stratified [Longuet-Higgins,
1968]—unless it is kept in mind that 4, is effectively the square
of a vertical wavelength. As was pointed out earlier, positive
equivalent depths are associated with vertically propagating
waves, and negative equivalent depths with vertically trapped
waves. Lindzen [1966] and Kato [1966] first pointed out the
role that these negative eigenvalues play in the problem of
forced waves.

The second (meteorological) method of solution appears
cumbersome in comparison with the first method, which in-
volves the vertical baroclinic modes: it is necessary to know the
frequency ¢ and zonal wave number k of the forcing at the
outset, because there is a different set of eigenfunctions: equiv-
alent depths for each (¢, k) combination. Furthermore, the
response of the ocean cannot be studied locally (even if the
response is local) because the eigenfunctions cover the sphere.
This method is nonetheless of great value because it gives
detailed information about the vertical structure of oceanic
motion, and it enables identification of the factors that can
prevent the establishment of vertical baroclinic modes.

C. THE ForcING FuncTION

In equations (1) the surface wind stress is treated as a body
force in a mixed surface layer of depth D. Atmospheric pres-
sure disturbances that can generate oceanic motion appear in
the boundary condition in (2b). It is therefore not immediately
possible to compare the relative importance of these two types
of forcing. Since the pressure in the mixed surface layer of
depth D is

P = PA + goon
where 7 is the elevation of free surface, and since
M = Ws

where w; is the vertical velocity at the free surface, it is possible
to derive the following equation for the vertical velocity in the
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mixed surface layer (where N* = 0): .

L(w) = K-curl (a"'f-“- f’) + ig div (ﬁ)

PA_ Do | 1 2P4A
o’—f  a 90 ¢*—fPasinf o¢

The complicated operator L need not concern us; this equation
is of interest only because it permits us to compare the relative
importance of wind stress and pressure forcing. If we make the
B plane approximations (see Appendix B), then (12) yields

— ieDV?

+

(12)

forcing function =

—fk-curl ¢ — Br* = % div < + DBPA, + DV*PA,

(13)
A B C D E

plus terms proportional to Bf. The vector operators now ap-
pear in their Cartesian form. Let | PA| and |7| denote the
characteristic amplitudes of the pressure fluctuations and wind
stress, and let L and T be the characteristic length and time
scales of the forcing. The relative importance of each of the
terms in (13) is then

: .' ‘|7| © DB PA|

Id gy Dipal
L LT L - LT (14)
A B C D E

Observe that the ratio of term C to term B is the same as the
ratio of term D to term E. Hence a rearrangement of the terms
in (14) is

Ml D| PA|

(146Dl (1 +BLTA
Lo v (15)
A C+B E+D
Take D = 50 m, |7| = 1 dyn/cm?, and | PA| = 4 mbar = 10°
dyn/cm?. (In severe storms, | PA| can be as large as 50 mbar.)
Figure 5 shows the importance of the various terms as a
function of L and T. For storms with a period of 1 day and a
scale of 200-400 km, all the terms are nearly equally important
(if we are in the vicinity of 30°N or 30°S). The importance of
term A decreases with a decrease in latitude. Regions of the L-
T diagram where the different terms dominate are indicated in
the figure by the appropriate letters. Pressure fluctuations are
most important when the length scale L is small. The diver-
gence of the wind stress is most significant when the time scale
is short. :

The manner in which the ocean responds to this forcing is
the subject of the following sections. We shall find that inertia-
gravity waves are excited by (relatively) high-frequency distur-
bances so that terms A, C, and E are most important. I.
Orlanski (unpublished manuscript, 1970) has pointed out that
because pressure fluctuations, unlike the wind stress, do not
act through a mixed layer which takes a certain time to become
established, they are particularly effective for the generation of
inertia-gravity waves. Rossby waves are generated by west-
ward propagating disturbances with low periods so that terms
A, B, and D matter most. (The area under the hyperbola BLT
= 2 corresponds to the shaded part of Figure 4.) We shall find

'/T
T1 1 X 1.5
ch ko E

12h ; i o 3

b ke et il e L
1day — — — 6.0
2days ] — 110
\ o —
4days |— > 24 (4)
: Q\ —_—
X S D: 2 ]/l.
400km 200km 100km
Fig. 5. Relative importance of the various terms in (15) as a

function of the time scale T and the length scale L of the forcing
function. Vertical lines are (P| PA|/L) = const. Horizontal lines are
Tf = const. Hyperbolae are BLT = const. The values of the constants
are given on the lines. In the case of horizontal lines the constants are
for f at 30°N and 9°N. Parameter § is evaluated at 30°N. The letters
A, B, etc. indicate the regions where the different terms in (15) are
dominant. i

that there are wide bands of frequencies and wave numbers for
which no oceanic waves are excited; the response is simply
trapped in the vicinity of the forcing region.

D. VERTICALLY PROPAGATING LATITUDINAL MODES

This sectsn concerns a description of the oceanic response,
to forcing at a given frequency and zonal wave number, in
terms of vertically propagating and vertically trapped latitudi-
nal modes. These modes are eigenfunctions of Laplace’s tidal
equations, and each mode is associated with an equivalent
depth A, (or ¢). In order to have an appreciation for the
significance of the different values that A, can assume, we start
by describing the solution to the vertical structure equation for
a wide range of values of 4,.

1. Vertical Structure

The equation that describes the vertical structure is

W + (N*/gh)W = F, (16)

where F, is the projection of the forcing function onto the
latitudinal mode under consideration. We regard F, as a con-
stant in a surface layer of depth 50 m. Below that, its value is
zero.

Equation (16) is to be compared with the equation that
describes the vertical propagation of internal gravity waves in
a stratified nonrotating fluid:

W,, + [(N*/¢?) — 1]k*W = 0 a7

(See, for example, Turner [1973].) If ¢ << N, then we recover
(16), which therefore is merely the equation for low-frequency
internal gravity waves. The effects of rotation and the variable
Coriolis parameter enter through the parameter 4,. For a given
value of &, the solutions of (16) are either oscillatory every-
where or exponential everywhere. Equation (17), on the other
hand, can for a given frequency have solutions that are oscilla-
tory in some regions (where ¢ < N) and exponentially decay-
ing in others (where ¢ > N). Hence trapped oscillatory modes
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Fig. 6. The oceanic response for various negative values of the equivalent depth for thermoclines representative
tropical oceans and (b) mid-latitude oceans. The dotted lines show N(z), which in Figure 6a has a maximum value of 2 X
1072 s=* at 87 m. The function plotted is Z(z) of (7a), normalized with respect to its value at the surface.

in the thermocline (where N has a maximum) are possible. By
confining attention to hydrostatic motion, for which ¢ << N,
we are precluding such possibilities.

a. Negative equivalent depths. 1f h, < 0, then (16) has
exponentially decaying solutions so that the response of the
ocean is vertically trapped near the forcing region. For con-
stant values N the vertical e folding depth is (g| | )2/N. The
smaller | h,| and the larger N, the more severe the trapping.
Figure 6 shows the amplitude of the response, as a function of
depth, for different negative values of A, for different values of
N: Figure 6a is representative of the tropical oceans; Figure 6b,
which has a deep thermocline, is representative of the North
Atlantic. (The minimum that N has at a depth of about 400 m

is apparently the result of communication with the Polar Sea.) .

Figure 6 shows that the sharp thermocline in the tropics pre-
vents the effect of the forcing from penetrating to great depths
(unless h is very large and negative). The deep thermocline,
between 600 and 1200 m in Figure 6b, similarly attenuates the
oceanic response. :

The results of Figure 6 are for body forces (due to the wind
stress) in a mixed surface layer 50 m deep. If instead the
forcing is due to atmospheric pressure fluctuations, which
affect the surface boundary conditions (see equation (25)),
then a mixed surface layer need not be involved, but the
oceanic response for 4, < 0 will be essentially the same. Hence
for small negative h,, the amplitude of the vertical dis-

placement of fluid particles (in response to the forcing) decays -

exponentially downward into the interior of the ocean. In such
cases the ocean is said to behave as an ‘inverted barometer.’
We shall know for which frequency-wave number ranges to
expect such a behavior if we know the ranges for which 4, is
small and negative.

b. Positive equivalent depths.. For positive values of A;,
(16) has solutions that represent vertically propagating waves.
If

m = N(z)/(gh)"* 17)
is large, then the WKBJ approximation gives
l . n
w W exp [il fm(z) dz] a7

Hence m, as given by (17'), is the ‘local’ wave number, which.
increases as N increases. If the waves become very short, they
are associated with large vertical shears and are likely to break
or are prone to dissipation. Short waves are therefore unlikely
to penetrate very sharp thermoclines, such as the ones in the
tropics.

The above remarks are valid when the vertical scale of the
waves is short in comparison with the scale of vertical varia-
tion of N(z). Consider next the opposite extreme, namely, a
wave incident on a discontinuity of N(z), where the value of N
abruptly changes from a constant N, to a different constant N,.
The waves transmitted across this discontinuity have ampli-
tude

T =2/(1+ Ny/N,) (18a)
The reflected wave has _arhplitude
e Nl — Ns
R = NFN, 1 (18b)

where / is the amplitude of the incident wave. The parameter T
is independent of wavelength. As the ratio N,/ N, increases, the
amplitude of the vertical velocity below the discontinuity be-
comes smaller. If, however, N; > N,, then the amplitude of the
vertical velocity below the discontinuity is greater than that
above the thermocline. This is consistent with the results of
(17), but it does show that 7 is not a measure of the energy that
penetrates the thermocline.
Consider the quantity

J=W*W, — WW}* (19)

where W* is the complex conjugate of W. It follows from the
homogeneous equation (16) that J, which is a purely imagi-
nary number, is independent of depth. Since the pressure is
proportional to W, J is essentially the vertical energy flux [see
Eliassen and Palm, 1960]. If the vertical velocity is of the form
™2 then

J~ |mwr|

This quantity is a constant for the expression in (17), which
implies that the vertical flux of energy is a constant for very .
short waves. In general, variations in N can reflect certain
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Fig. 7. The ratio of the downward flux of energy at 4000 m to that
above the thermocline for the (case 1) equatorial and (case 2) mid-
latitude stratifications shown in Figure 6.

h
h

wavelengths. To determine how much energy penetrates the
thermocline, for example, it is necessary to calculate the ratio J
= J,/J,, where J, and J, are the contributions to J due to
downward propagating waves below and above the thermo-
cline, respectively. For the step discontinuity in stratification
just described,

[J| = 4N\No/(Ny + N,)? (20)

the maximum transmission of energy occurs when N, = N,.
For large or small values of N,/N,, little energy propagates
across the discontinuity. A downward propagating internal
gravity wave reflects completely when it encounters a layer of
very large stability (N, — «) or a homogeneous layer (N, = 0).
(Although the latter result is correct, it cannot be inferred
from this analysis, in which it is assumed that ¢ < N,.)'

. ‘\\2»
N

Fig. 8. Schematic dispersion diagram for free and forced waves on a sphere. (This is a modified version of a figure in the

Consider next a fluid with two discontinuities in N: a layer
of depth z, and Viisild frequency N, is bounded above and
below by infinite layers of fluid with N = N, and N = Nj,
respectively. We now find that there is perfect transmission of
energy provided that

cos (Mmyz,) = 0

@n
(22)

because the reflected wave at the first discontinuity in N is
canceled by the reflected wave from the second discontinuity.

Mied and Dugan [1974] have studied analytically the effect,
on vertically propagating waves, of a stratification that varies
continuously. Here we confine our attention to numerically
obtained results for functions N(z) that are representative of
(1) equatorial and (2) mid-latitudinal regions. To permit de-
composition of the energy flux vector into upward and down-
ward components, it is assumed that there are regions where N
has constant values above the thermocline and below 4000 m.
A radiation condition—downward flux of energy only—is im-
posed below 4000 m. The results are shown in Figure 7, from
which it is evident that for certain values of 4 (45, 10, and 3 cm
for case 1 and 25 and 3 cm for case 2) the ocean is transparent,
and energy readily propagates from the surface to the ocean
floor. These values of 4 are effectively the solutions to (21).
Long vertical waves (50 < A < 500 cm), however, undergo
considerable internal reflection, and less than 20% of their
energy penetrates to the ocean floor.

The discussion thus far has concerned solutions to the ho-
mogeneous version of (16) with a radiation condition imposed
at depth. Solutions to the nonhomogeneous equation (16),

my? = mumg

thesis by Moura [1975].) Figures 9, 16, and 20 are effectively sections from this figure.
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Equator

Fig. 10. Velocity and pressure distribution in a horizontal plane for
equatorial Kelvin waves [after Matsuno, 1966].

with the appropriate boundary conditions imposed at the
ocean floor and surface, can be obtained similarly. There is
now no vertical propagation of phase; the vertical structure is
similar to that of a forced mode. The role that reflection from
the ocean floor plays in the establishment of these modes
depends on the value of 4 and is relatively small if 4 is greater
than 50 cm but less than 500 cm. For certain values of 4 the
oceanic response is resonant. These values correspond to the
natural baroclinic and barotropic modes and will be discussed
further in section E.

2. Eigenvalues h, and Latitudinal Eigenfunctions H,

The vertically propagating, or trapped, latitudindl modes
onto which the forcing function has to be projected are eigen-
functions of Laplace’s tidal equations when ¢ and k are speci-
fied and e (or the equivalent depth A;) is the eigenvalue. Let us
denote the complete set of eigenfunctions and eigenvalues,

“which will include positive and negative values of A, by {H,,
hi}. The index / is the ‘signature’ of these latitudinal modes and
will be found to represent the number of nodal lines which
these functions have between the equator and the pole. It
follows that / can be regarded as a discrete meridional wave
number. The eigenvalues of (10) can be written

h = h(o, k, 1) (23)

From the previous section we recall that A is proportional to a
vertical wavelength. If the stratification N is constant, then the
vertical wave number is m = N(gh)"?. Hence (23) can be
rewritten

o = ok, [, m)

which is the dispersion relation for waves in a rotating shallow
spherical shell of fluid of constant stratification.

Figure 8 schematically shows the surfaces defined by equa-
tion (24) when m and k are regarded as varying continuously.
For o < 29, m is real for any ¢, k values. (Only inertia-gravity
waves are excited in this case.) If ¢ < 29, then for any values of
o and k, both real and imaginary values of m can satisfy the
dispersion relation.

a. Vertically propagating waves. Figure 9 shows three
sections (along the planes s = 0, £5) from Figure 8 for that
range of parameters for which 4 > 0. It is evident that there are
two principal classes of freely propagating waves:

1. An infinite set of inertia-gravity waves (/ > 1) is excited
for any values of ¢ and k. The associated eigenfunctions are all
sinusoidal equatorward of the inertial latitude that corre-
sponds to ¢ and are exponentially decaying poleward of that
latitude. Hence the lower the frequency, the more equatorially
trapped the waves.

2. A finite set of Rossby waves (' > 1) is excited if the

-frequency and wave number of the forcing fall in the shaded
part of Figure 2. Figure 9 shows that the number of Rossby
waves that can be excited increases as the frequency dccreases
If their equivalent depths are small, then these waves are
equatorially trapped. The higher the meridional wave number,
the further poleward the Rossby waves extend.

(24)

There are two additional waves that can be excited: a
Rossby-gravity mode (/ = 0), to be described shortly, and a
Kelvin wave for which we adopt the convention /’ = —1. The
Kelvin wave can be excited only by eastward propagating
disturbances. If its equivalent depth has a small value, then it
can be described on an equatorial 8 plane (see Appendix B):

U = exp [— _—-Z(gﬁ}}:)”’:l

(25a)
V=0 (25b)
o = kgh)"? (26)

There are no meridional velocity fluctuations associated with
this wave (in the limit of small values of 4), and it is non-
dispersive as it propagates eastward. Figure 10 shows its struc-
ture, and Figure 13 shows the equivalent depth as a function of
o and k. The axis k = 0 is singular because h — o there. As &
becomes large, the wave extends beyond the tropics and can no
longer be described on a 8 plane. An approximate analytical
description is still possible and is given by equations (B5) in
Appendix B. Note that the meridional velocity component is
now nonzero. ) '

The equatorial 8 plane provides an accurate description of
waves with small values for their equivalent depths. The ap-
propriate equation to solve is therefore (11), with f = 8y and
with h regarded as eigenvalue [see Lindzen, 1967]. This equa-
tion ‘has solutions that are bounded at large values of |y|
provided

) ,
g;—k’—%'i (gh),,,(21+1) 1=0,1,2,--  (27)
+so that

(gh)? = {—-13(21 + 1)+ I:/S’(2l + 1)

)] Y )

The eigenfunctions are

Vi = exp (—4&%) Gl&) (29a)

- [ 1G,:(&)
""" ga Lk/o+ (gh)

4 1Gi) ]exp (k)

"kl + (gh) " (29)

R [ 1G, (&)
! ca Lk/o+ (gh)y"?

- T/if“—f((;,))‘l_n] exp (—4&%)  (290)

where

& = (B%/gh)"%y

and the G, are Hermite polynomials (see Appendix A). The set
of eigenfunctions ¥, needs a weighting factor in order to be
orthogonal:

[ = B Wate Vaen) dy =

(%}21 )l/‘(.’r)llﬂznn![ 2n + l (ghﬁz)l/Z] mn (30)
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Fig. 11. Létitudinal structure of the meridional velocity com-
ponent of the gravest (¢) symmetric and () antisymmetric westward
propagating, inertia-gravity waves with a period of 5 days and a
wavelength of 2000 km. Distance from the equator is given in units of
1000 km.

0

where 8, = 0 if m # n and 6,,, = 1 if m = n. Care must be
taken in the evaluation of this integral, since the y domain on a
sphere is finite. We shall find that (30) can be used for the
normalization of low-frequency inertia-gravity waves of any
meridional (/) order; in the case of Rossby waves it can only be
used if / ~ O(1). '

The gravest antisymmetric mode (/ = 0) deserves special
attention. For this Rossby-gravity wave,

(gh)'* = a*/(B + k) or —a/k (31)

The second root has to be discarded because the associated
zonal velocity field (equation (296)) is singular even though the
meridional velocity field is bounded.

For/ 2 1, (28) yields two roots: 4,* and 4,~. For large values
of /,

(gh*)"? — o*/B(2 + 1) (32)
It follows that the turning latitude yr for solutions of (11),
y* = (2 + 1)(gh)"*/8 — o*/* (33)

in the limit in (32). This is simply the inertial latitude. The &,*
solutions to (29) therefore yield the equivalent depths for the
inertia-gravity waves. Figure 11 shows the first few modes for a
choice of ¢ and k that corresponds to equatorially trapped
waves which have been observed (see section H). Note how

rapidly the turning latitude approaches the inertial latitude as /
increases.

It follows from (32) that the integral in (30) is always posi-
tive for the i,*. It can therefore be used for normalization
purposes.

The h,~ solutions to (28) are associated with Rossby waves.
For large values of /, '

B o’ '

g Mo — ——Q2+ 1) - ——r (34)

o Bk » BRI+ 1)

g

Hence the turning latitude of the eigenfunctions increases as /

increases. Only the gravest modes can be approximated by an

equatorial 8 plane. Lindzen [1967] has suggested that only

modes for which the distance y; in (33) is less than the distance

from the equator to the pole are valid. Longuet-Higgins’s

[1968] accurate calculations for waves on a sphere show that

only a finite number of Rossby modes are permissible. The

equatorial 8 plane approximates the gravest of these modes

and not, for example, those for which 4 = «. Figure 12 shows

the gravest Rossby waves for values of ¢ and & that correspond
to a wave in the tropical winds (see section H).

For high meridional wave numbers / the equivalent depths

‘for inertia-gravity waves are small, but for Rossby waves the

values are large. This implies that in extraequatorial regions
the vertically propagating inertia-gravity waves have short
vertical wavelengths but the Rossby waves should have long
vertical wavelengths. Thus the vertical structure of the Rossby
waves, but not of the inertia-gravity waves, will correspond to
a superposition of the gravest vertical modes.

Figure 13 enables us to read off the equivalent depths for the
four gravest equatorially trapped waves, for given values of ¢
and k. The Kelvin and Rossby-gravity waves both have group
velocities to the east for all frequencies, though the phase
velocity of the Rossby-gravity wave can be westward. For the
higher-order Rossby and inertia-gravity waves (! > 1) the
zonal group velocity vanishes when

==6/2 (35)

The dotted lines in Figure 13 correspond to this equation.
Rossby waves with a longer (shorter) wavelength have west-
ward (eastward) group velocities, but the phase velocity is
always westward. It follows that in the absence of coasts,
Rossby waves can only be excited by westward propagating
disturbances, and the Kelvin wave only by eastward propagat-
ing disturbances. The equivalent depth determines the latitudi-
nal scale of the modes (see (29¢)), so that Figure 13 is invalid
for those frequency-wave number ranges where the value of 4
is large. (The equatorial 8 plane does not adequately describe
the associated eigenfunctions.) In the case of Rossby and
Rossby-gravity waves, h — © along the curve

k=-8/c (36)

The axis k = 0 is another singular curve for Kelvin and Rossby
waves. The appropriate dispersion relations in these limiting
cases will be discussed shortly. Figure 13 shows that the
Rossby-gravity wave is unlikely to be important in the re-
sponse of the ocean to forcing at frequencies equal to or lower
than the seasonal one. The small values of the equivalent
depths at low frequencies imply very short vertical wave-
lengths and very $mall latitudinal scales. (If # = 60 cm, the
latitudinal scale is 325 km, and if # = 0.06 cm, it is 60 km.) The
implied vertical and horizontal shears are probably too large
for the waves to be stable.



26 PHILANDER; FORCED OCEANIC WAVES

22 R

.5

20 (o)

0 (b)

Fig. 12. Latitudinal structure of the meridional velocity component of the gravest (a) symmetric and (b) antisymmetric
Rossby waves with a period of 45 days and a wavelength of 2000 km. (Normalization is arbitrary.) Distance vfrom the

equator is given in units of 1000 km.

The relative magnitudes of the vertical phase and group
velocities of the four gravest equatorial modes can be inferred
from Figure 14. It is evident not only that all low-frequency
waves have short vertical wavelengths but also that their verti-
cal group velocities are very small. Waves of higher frequency
are therefore more likely to penetrate into the deep ocean. The
zonal wavelength is another factor that affects vertical propa-
gation. For example, eastward propagating atmospheric waves
of small horizontal dimensions (1/k = 100 km) excite low-

frequency Kelvin waves with large vertical group velocities -

more readily than do waves that have large horizontal dimen-
sions (1/k = 1000 km, for example).

The frequencies of Kelvin and inertia-gravity waves appear
to become infinitely large as the vertical wave number ap-
proaches zero. This is a consequence of the hydrostatic ap-
proximation. The maximum frequency for these waves is of
course N. Note that the Rossby and Rossby-gravity waves
have finite frequencies (considerably less than N, see Figure 2)
when the vertical wave number is zero. :

The description of the eigenfunctions and eigenvalues given
above is inaccurate when the eigenfunctions have a significant
amiplitude outside the tropics. This happens when the equiva-
lent depth becomes large (b — < or ¢ — 0) or when the
meridional wave number / of a Rossby wave becomes large.
If the mode under consideration has a turning latitude in mid-
latitudes, then it can be described in terms of sphéroidal wave
functions. If the turning latitude is close to the pole so that the
mode is sinusoidal over the globe, then it can be described in
terms of associated Legendre functions. In the latter limit the
inertia-gravity waves are irrotational, and the Rossby waves
are nondivergent. (See (B6)-(B9) in Appendix B.)

For a local description of modes that extend into mid-
latitudes and high latitudes, one can use the 8 plane equation
(equation (11)). This equation is accurate, but difficult to
solve, if

f=fo+ﬂy

It is often assumed that f has a constant value f,, in which case
the latitudinal structure of the modes is described by e*~. (This
approximation is valid for high meridional wave numbers / but -
does not describe a mode in the vicinity of its turning latitude.)

The dispersion relation is

gh = (¢® — f2)/(k* + I* + Bk/o) 37

In a low-frequency limit (¢ << fo) that filters out inertia-
gravity waves, and in a high-frequency limit that filters out
Rossby waves (so that the term Bk/o is negligible), the dis-
persion relation (37) is formally correct. (See Appendix B.)

Figure 15 is a dispersion diagram based on (37). Note that
the inertia-gravity and Rossby waves are widely separated in
frequency and that the Rossby-gravity and Kelvin waves are
absent because they are grave modes (/ ~ O(1)). The inertia-
gravity waves have a cutoff frequency at the inertial frequency.
Waves with a period exactly equal to the inertial period have
zero vertical wavelength and zero vertical group velocity. Such
waves, which are predominantly excited by atmospheric forc-
ing of large horizontal extent (small k and /), should therefore
be expected in the surface layers of the ocean only. Small
atmospheric storms will excite waves that propagate yertically
quite rapidly and that have a frequency higher than'the inertial
frequency. Waves with exactly the inertial frequency in the
deep oceans could be nonlocally excited modes that have their
turning latitude at the point where measurements are being
made. Equation (37) and Figure 15 do not describe such
modes.

b. Vertically trapped modes. The previous section con-
cerned modes with positive equivalent depths. The associated
eigenfunctions do not form a complete set. Consider, for ex-
ample, the positive equivalent depth modes associated with a
positive value k and a frequency ¢. Such an eastward propa-
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gating disturbance excites an infinite number of inertia-gravity
waves and possibly a single Kelvin wave. This infinite set of
eigenfunctions is not complete because they are all ex-
ponentially small beyond the inertial latitude for the frequency
o. It follows that these functions cannot represent a forcing
function that extends beyond the inertial latitude. Modes with
negative equivalent depths are necessary for completeness. At
subinertial frequencies these forced modes are as important as
the free modes (Rossby waves): if the forcing is in the un-
shaded region of Figure 2, only forced modes play a role; if the
forcing is in the shaded region, which occupies a very small
area of the g-s plane, then the eigenfunctions consist of a finite
number of Rossby modes plus an infinite set of forced modes.
The forced modes, unlike the free modes, are not solutions
of the homogeneous (unforced) equations of motion and do
not correspond to natural modes of the ocean. For the most
complete description of the properties of these modes, the
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reader is again referred to Longuet-Higgins [1968]. The eigen-
functions associated with the negative equivalent depth modes
are, in general, oscillatory poleward of a certain turning lati-
tude and exponentially decaying equatorward of this latitude.
This is clearly evident from the equation for the special case of
forcing that is independent of longitude (s = 0):

& %’—#’) -
(‘du’+:el~u’ V*=0

Since the free modes on the other hand are oscillatory (ex-
ponentially decaying) equatorward (poleward) of the turning
latitude, the sets of eigenfunctions that correspond to the free
and forced modes complement each other perfectly. Because
they are trapped at the poles, the eigenfunctions with negative
equivalent depths are most useful in the study of the response
of high-latitude oceans. They are not particularly useful in

(38)

=0
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+—— PERIOD (days)
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Fig. 13. Isolines of equivalent depths (in centimeters) as a function of frequency and zonal wave number for the four
gravest equatorial modes.
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studying equatorial oceans, since the gravest modes are ex-
ponentially small there.

The negative equivalent depth eigenfunctions are either
symmetric or antisymmetric about the equator. If the eigen-
functions are exponentially small near the equator, then the
only difference between these modes is that the motion in the
two hemispheres is either in phase or in antiphase. In that case
the eigenvalues for a pair of symmetric and antisymmetric
modes have essentially the same values.

The eigenvalues, as a function of frequency, for three differ-
ent zonal wave numbers, are shown in Figure 16. Figure 16¢
corresponds to the case in which the forcing is independent of
longitude. The eigenvalues are seen to be practically independ-
ent of frequency if ¢ < 0.20. At low frequencies the eigen-
values come in pairs that correspond to the symmetric and
antisymmetric modes referred to above. The eigenvalues of the
pairs coalesce as the frequency increases, or as the (meri-

dional) mode number increases, in agreement with the dis-
cussion in the above paragraph.

If the forcing is eastward (s > 0, Figure 16a), then the
negative equivalent depths have a maximum value at a certain
frequency ¢,. The negative equivalent depths become very
small when the frequency is very low or very high in com-
parison to g,. This implies that the depth of penetration of the
oceanic response to eastward forcing gets smaller as the fre-
quency decreases or increases (in relation to a certain value).
The depth of penetration of the response can also be shown to
decrease as the horizontal dimensions of the forcing decrease.

Consider next westward propagating disturbances. The fre-
quencies for which & — 4+ in Figure 95 and & — — in
Figure 16b are the same and are given by (B9) in the limit ¢ —
0. (Figure 2 shows the variation of these frequencies with zonal
wave numbers for the gravest modes.) It is evident from a
comparison of Figures 166 and 9b that above a certain fre-
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Fig. 15. Frequency as a function of vertical wave number for different fixed values of k = I (km~") for (a) inertia-gravity
waves and (b) Rossby waves, according to (37), with m = N/(gh)”* and B evaluated at 40°N.
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= 0, +5 that show negative values of the equivalent depth as a function of ffequency [after

Fig. 16. Three sections from Figure 8 along s

Longuet-Higgins, 1968].

quency (2/10 for the case s = —5), only an infinite set of
negative equivalent depth modes come into play, that is, no
R ossby waves are excited. This happens if the forcing is above
the shaded region of Figure 2. All the eigenvalues are finite in
this case. Once the forcing is in the shaded region, fewer forced
modes, but still an infinite number, plus a finite number of free

‘modes (a perfect complement of the number of forced modes)

are involved. The equivalent depths can now have infinitely
large values. The likelihood of large values for the equivalent

~ depths increases as the frequency decreases. From the dis-

cussion of the previous section, such large values for | | imply
an oceanic response that is independent of depth (barotropic).

Lindzen [1967] has proposed that the negative equivalent
depth modes can be approximated on a mid-latitude 8 plane,
centered on, say, 45°N. The appropriate equation is (11), and
the boundary conditions are the following:

Equator »
' V=0 at y=-d (39a)

Pole | st
V=0 at y=d (39b)
“The eigenfunctions are »
V =sing(y—d) (40a)

where

qa_“’;hoz_.kz—ﬁ;K:% [=1,2,3 - (40b)

These expressions give the symmetric modes only. Since the
eigenvalues for the pairs of modes are close together anyway
(see Figure 16), this effectively gives all the eigenvalues. (By
changing the boundary condition (equation (39a)) to ¥, = 0
so that / in (40b) is replaced by [ + 4, one can calculate
approximations to the antisymmetric modes.) Lindzen [1967]
finds excellent agreement between the exact solution and (40b)
for s = —1, ¢ = Q (which corresponds to the diurnal atmo-
spheric tide).

For large values of /(in equation (40b)) we can introduce the
concept of a continuous meridional wave number / and replace
(40b) by (37). Figure 17 shows contours of constant values of &
as a function of frequency and zonal wave number. This figure
is essentially the same as Figure 4, but together with the
solution of the vertical structure equation (section D1) it en-
ables us to infer the effects of variable stratification and the
finite depth of the ocean. The discussion attendant on Figure 4
is appropriate here. Some of the comments in the above para-
graphs concerning the depth of penetration of the oceanic’
response are clearly evident from Figure 17.

Since the eigenfunctions associated with & < 0 eigenvalues
are ‘trapped at the poles,” they are particularly convenient
when one is studying the oceanic response in mid-latitudes and
high latitudes. These modes could also play an important role
in the description of the response of an equatorial ocean.
Consider, for example, an eastward traveling disturbance that
is antisymmetric about the equator. If its frequency is suf-
ficiently low for the generation of inertia-gravity waves to be
unimportant, then the oceanic response will be trapped near
the surface. Hence the modes associated with 2 < 0 values are
needed to describe this response. These modes, however, are
exponentially small near the equator, so this method of solu-
tion is essentially a useless one for problems of this type.
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. Fig. 17. Contours of constant values of A, as a function of frequency and zonal wave number, as given by (37), with f
and 8 evaluated at 40°N. The insets show the vertical structure schematically.

E. SoLUTIONS IN TERMS OF VERTICAL BAROCLINIC MODES

In this section we solve (1) by first solving the vertical
structure equation (equation (8)) subject to the boundary con-
ditions of (9) at the free ocean surface and rigid ocean floor.
These boundary conditions cause the vertical wave numbers to
be discretized so that this approach does not readily give
information about vertically propagating or vertically trapped
phenomena. The analysis of section D shows how the vertical
modes are established by vertically propagating waves. Hence
from a physical point of view, modes are possible only if the
frequency is higher than inertial or if the values of ¢ and k fall
in the shaded area of Figure 2. The vertical modes that satisfy
(8) and (9), however, form a complete set and can be used to
describe the oceanic response even when no free waves are
excited.

1. Vertical Modes

Equations (8) and (9) can be solved analytically if N is
constant (the vertical modes are then trigonometric functions)
or if N is an exponential function (the vertical modes are then
Bessel functions). Lighthill [1969] describes a method to calcu-
late the modes if the density field is approximated by a number
of layers each of constant density. Munk and Phillips [1968]
note that the higher-order modes can be calculated by using
the WKBJ approximation if N is nonuniform. In general, it is
a trivial matter to solve the equations numerically for any
N(z). The equivalent depths, of the first few modes, for the
equatorial and the mid-latitude stratifications are shown in
Tables 1 and 2, respectively. (For the barotropic mode the
equivalent depth is the actual depth of the ocean and is 4
orders of magnitude greater than the equivalent depths for the

baroclinic modes.) It is clear that there can be considerable
horizontal variations in the stratification N(z). Miropolskiy et
al. [1975] have discussed these variations along certain sections
in the Pacific and Atlantic oceans and have also assessed the
effect that the variations have on the horizontal propagation of
high-frequency waves.

The characteristic speed associated with a given mode is
(gh)"%, so that barotropic disturbances propagate several or-
ders of magnitude faster than baroclinic disturbances. The
characteristic horizontal length scale associated with a given
mode is the Rossby radius of deformation

Le = c/f = gh)*/f (41a)
This length scale increases as the equator is approached. Out-
side the tropics, L can be evaluated locally by using the local
(constant) value of f. In the tropics we define Ly such that
Lr = ¢/(fo + BLg) (41b)

so that
Lg = (c/B)"* (41c)

at the equator. The latitudinal variation of Lg, for a fixed value
of ¢ is shown in Figure 18. A characteristic time scale for each
mode is

T = Lg/c (42a)
Outside equatorial 'regions,
T=1/f (42b)
In equatorial regions,
T = 1/(Bc)"? (42c)

TABLE 1. Typical Values for Equatorial Modes

m
0 2 3
h,cm 4x10° 60 20 8
c,em/s 2X 10¢ 240 140 89
Lg, km 3,100 - 330 250 200
T, days 0.16 1.5 20 2.6
¢ = 40 /gh 17.3 129X 10° 389 X 10° 972 X 10°
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TABLE 2. Typical Values for Mid-Latitude Modes

m
0 2 3
h,cm 45X 10° 110 17 11
c,cm/s 2Xx10* 332 130 105
Lg,km 2,360 37 15 12
T, hours 3.08 3.08 ©.3.08 3.08
€ = 4Q%*/gh 17.3 71 X 10° 457 X 10°

707 X 10°

Table 2 gives typical values for a mid-latitude mode (see N in
Figure 6b) at latitude 45°. Table 1 gives typical values for an
equatorial mode (see N in Figure 6a). Both length and time
scales for equatorial modes are larger than those for mid-
latitude modes. '

Figure 19a shows the vertical structure of the first four
baroclinic modes for the equatorial Atlantic, and Figure 196
that for the North Atlantic. (The equivalent depths are given
in Tables 1 and 2.) The barotropic mode (not shown in Fig-
ure 19) has horizontal velocity components that are practi-
cally independent of depth and a vertical velocity that de-
créases linearly with depth.

The complete set of eigenfunctions and eigenvalues (i.e.,
barotropic plus baroclinic modes and equivalent depths) will
be denoted by {Zn, €m}. All the €, and equivalent depths are
positive. Here m is the signature of the mode and represents
the number of nodes that a mode has between ocean floor and
ocean surface. (The continuous range of vertical wave num-
bers of section D has been discretized.) This complete set of
functions can be used to represent the vertical structure of any
forcing function (provided it is a body force). Lighthill [1969]
asserts that all but the barotropic and first two baroclinic
modes can be disregarded, but Moore and Philander [1976]
have pointed out that the validity of this statement strongly
depends on the stratification and on the depth of the mixed
layer in which the body force acts. The discussion of the
previous section shows that there are situations in which a very
large number of vertical modes may be necessary to describe
the oceanic motion. The frequency and zonal wave number of
the forcing are of critical importance.

2. Latitudinal Structure of the Solution

Now that the vertical structure of the solution has been
determined, it remains to solve equation (10), with the appro-
~ priate component of the forcing term on the right-hand side,
for each mode. One way to proceed is to determine the eigen-
values of the homogeneous equation (10), with X regarded as
the eigenvalue. (The values of ¢, all of which are positive, are
known, since the equivalent depths are known from the solu-
tion of (8).) This complete set (H;, \;) can be used to expand
the forcing function in & series:

F,z,5\) = 2, ; AimZn(2)H(0) (43)

) 20N 40 60° 80N :

Fig. 18. Variation of the radius of deformation with latitude,
according to equation (41b), for the first baroclinic mode. (The dotted
curve is (41a).)

The oceanic response to any forcing can then be written

V@, z s \) = ; 2,: —-Al—m-Z,,,(z)H,(B) (44)

A= Nim

As was pointed out in the introduction, the set of functions
and eigenvalues (H,, \;) is distinct from the set of eigenfunc-
tions and eigenvalues (H,, €;) that can be obtained from (10) by
treating ¢, as the eigenvalue. Both sets of eigenvalues will of
course' satisfy the same dispersion relation (equation (23)).
Whereas we determine h, for given ¢ and k, from.(23) in
section D, we are now iriterested in the relation between o and
k for given positive values of A.

For the baroclinic modes of the ocean, which have large .
values of ¢ (see Table 2), the gravest latitudinal modes are
equatorially trapped and are accurately described by equation
(13). It is convenient to nondimensionalize the variables with
respect to the length and time scales of (41c) and (42¢):

B
Then (11) becomes

Vg + [6* — & = (K/3) = n*)V = Fu(n, K, &)

(x, y, 1/k) = (5)”2(5, n, 1/k) (h ‘};) = '(571)1'/7(7’ 1/8)

(45)

where F,, is the projection of the forcing function onto the
baroclinic mode under consideration. The advantage of this
formulation is that the homogeneous part of (45) is exactly the
same for each baroclinic mode. Equation (45) satisfies the
condition of boundedness at large values of n provided

R+ k) —a+2+1=0 (46)

This is merely a nondimensional version of (27), but we now
regard it as an equation for . This cubic has three roots: two
correspond to inertia-gravity waves, and the other to a Rossby
wave. The solid curves in Figure 20 are the curves described by
(45). This figure is a -k section from Figure 8. The dashed
curve in Figure 20 is described by

k=-1/26 47)

and is the locus: of zero group velocity points. The modes
(eigenfunctions) are described by Hermite functions [Matsuno,
1966] (see Appendix A). Individually, each latitudinal mode is
physically the same as the modes discussed in section D2, but
the two sets of modes are distinct, For example, the set dis-
cussed in section D satisfies the orthogonality relation (equa-
tion (30)). The set under discussion here satisfies the relation
(equation (A4)) in Appendix A. Figure 21 shows the latitudinal
structure of the first few modes given by (45) with & as eigen-
value. This is to be contrasted with the modes shown in Fig-
ures 11 and 12. Here the Rossby and inertia-gravity modes of
the same order / are described by the same Hermite function.
The latitudinal scale for these functions is the radius of defor-
mation. As the order / of the mode increases, the turning
latitudes steadily increase. This set of Hermite functions is
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Fig. 19. Structure of the vertical baroclinic modes for (a) the
equatorial and (b) mid-latitude stratification shown in Figure 6. The
equivalent depths are given in Tables 1 and 2.

complete on an infinite equatorial 8 plane [Cane and Sarachik,
1976]. (This is not true of the set discussed in section D.)

There is, in addition to the modes given by (45), a Kelvin
wave for which V = 0 on an equatorial 8 plane. This mode is
described by (25) and (26), where 4 has the appropriate value
for the mode under consideration.

If the frequency and wave number of the forcing should be -

such that (46) is satisfied, then a resonant mode of the ocean
will be excited. Thus if an atmospheric storm has energy over a
wide band of frequencies and wave numbers, then the spec-
trum of the oceanic response will have peaks at frequencies
and wave numbers that satisfy (46). The largest peak will occur
at those frequencies for which the zonal group velocity van-
ishes, for at other frequencies the energy will disperse. Hence
for a given baroclinic mode, strong resonance will occur at the
frequencies corresponding to the intersection of the solid
curves and the dashed curve in Figure 20. Wunsch and Gill
[1976] have explained peaks in sea surface height spectra from
islands in the equatorial Pacific in this manner. We re-examine
this hypothesis in section H.

If the forcing is nonresonant, then the solution can be ex-
pressed in terms of the modes, as is described above. This

30
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Fig. 20. The dispersion diagram for equatorial waves according to
(46). This figure is a section, in the ¢-k plane, from Figure 8.

Fig. 21. The gravest (a) symmetric and (b) antisymmetric eigenfunc-

tions for the homogeneous equation (45).

approach has been adopted in numerous studies. (See, for
example, Cane and Sarachik [1976] and references therein.) An
alternative procedure is to calculate the Green function of
(46). (It can readily be expressed in terms of parabolic cylinder
functions of noninteger order.) This representation of the solu-
tion is more informative and compact than the other one if the
forcing function has energy over a band of frequencies and
wave numbers for which no natural modes of the ocean are
excited (i.e., if the Fourier transform of the forcing function
falls entirely outside the shaded region of Figure 2). Inspection
of (45) reveals that for point forcing near the equator the
response will decay exponentially beyond a latitude

1 = (3* — k* — k/5)"? (48)

For g, k values in the shaded part of Figure 20 the above
expression gives zero or imaginary values of 5, in which event
the response to forcing at a point is only felt a latitudinal
distance n = O(1), a distance equal to the radius of deforma-
tion, from that point. Along the solid lines in Figure 20 the
disturbances are felt a distance

r=Q+ D2 [=0,12, - (49)

from the equator.

A disturbance will propagate furthest from the equator if its
zonal wave number falls on the dashed curve of Figure 20. In
that case,

Tmax” = (1/43%) + 5* (50)

Figure 22 shows nmax as a function of frequency for the first
four baroclinic modes of Table 1. The ‘dashed curve in this
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Fig. 22. The maximum latitude, as a function of frequency, to which équatorial disturbances can propagate for different
baroclinic modes. The equivalent depths are given (in centimeters) on the curves. The dashed curve is the inertial latitude.

figure is the inertial latitude cos § = X. If the ocean is forced in
the shaded part of Figure 22, then the response of the ocean is
latitudinally trapped within the neighborhood of the region.
(The higher the order of the baroclinic mode, the larger the
shaded region.) If the ocean is forced outside the shaded
region, then disturbances with a given frequency can propa-
gate poleward as far as the turning latitude for that frequency.
(The turning latitude is the boundary between the shaded and
the unshaded region.) We note that the (high frequency) iner-
tia-gravity waves can propagate-further than the inertial lati-
tude, but as the frequency increases, the turning latitudes for
all the baroclinic modes become asymptotic to the inertial
latitude. (In section C we showed that vertically propagating
inertia-gravity waves of sufficiently large meridional wave
number all have their turning latitudes at the inertial latitude.)
This is the basis for the hypothesis of Munk and Phillips [1968]
that the peak in the oceanic spectrum at the local inertial
frequency is due to the nonlocal (global) generation of these
waves. We return to this matter in section H.

It is clear from Figure 22 that the low-frequency Rossby
waves also have turning latitudes. These are weaker con-
densation points than those associated with inertia-gravity
waves, because for Rossby waves each baroclinic mode has a
different turning latitude. Longuet-Higgins [1965] and Bland-
ford [1966] explain subinertial frequency eddies near Bermuda
[Swallow, 1961] as nonlocally generated Rossby waves that
have reached their turning latitude. )

The discussion thus far has concerned the latitudinal dis-
persion of energy. For wide ranges of frequency, which in-
crease with increasing latitude, the response of the ocean is
latitudinally trapped. In such cases the response is also trapped
in longitude. Consider equation (11), nondimensionalized ac-
cording to (41) and (42):

Vee + Vi + (i/0)V; + (32 = n)V = 0
"Write
V = Ve-ik2e

T’henv

Ve + Ven + QV = 0 (51a)

where
0 = (1/45%) + & — o

If @ > 0, then (51) permits solutions that are oscillatory in ¢
and n so that waves can propagate across circles of latitude
and longitude. (The poleward propagation is possible only up
to the turning latitude where Q@ =0.) If the frequency of the
forcing is such that Q < 0, then it can be shown (with consid-
erable effort) that the Green function for (50) in an unbounded

(51b)
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Fig. 23. The maximum latitude to which low-frequency distur-
bances can propagate, according to (52), for different vertical modes
including the barotropic mode. The values of the equivalent depths are

given in centimeters. ;
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region is exponentially decaying in both horizontal directions.
Alternately, note that when Q < 0, solutions of (51) must be
exponentially decaying in at least one direction. Physically,
this can only happen with increasing distance from a wave
guide. Coasts provide such a wave guide for Kelvin waves. We
conclude that if the frequency of the forcing is such that 0<o0
and if we are not in the neighborhood of coasts, then the
oceanic response decays exponentially with distance from the
forcing region.

The turning latitude given by (515) is identical to that given
by (50). Hence in the shaded region of Figure 22 the baroclinic
response is trapped in both latitude and longitude,

The validity of the equatorial 8 plane (f = By) is limited to
the tropics. Since the turning latitudes of the modes H, de-
scribed above increase as / increases (see (49) and Figure 21),
mid-latitude modes are associated with high values of /. The
spheroidal wave equation (equation (12)) is a good approxi-
mation to Laplace’s tidal equations at large values of /. (See
Appendix B.) An analysis of this equation shows that for
Rossby waves the turning latitude 8 is given by the equation

(s> — 1) cosec’d + ecos? 6 + 2/A) —1 =0 (52)
The turning latitude is a maximum when
= —sin? 6/2\ (53)

(This equation is the same as (47) in the tropics provided s is
large.) The maximum turning latitude is shown as a function
of frequency in Figure 23 for the barotropic and first few
baroclinic modes.

The above results can be obtained in an approximate form
from the 8 plane equations in a manner similar to that de-
scribed in section D and Appendix B. The mid-latitude, 8
plane approximation version of (51), with f, = const, is

Ve + P + [(@/46%) + 3 — 1]P = 0 (54)

where the nondimensionalization is now according to (41a)
and (42b) and a = BLg/f,. At 45°N, a = Lg/a is the ratio of
the radius of deformation to the radius of the earth, so this
term in (54) is important at low frequencies only. The Green
function for this equation is

l 1 T 1/2
G= Z;KO(QR) ~ (Z—Q—E) e 9R for large R
where R is the radial distance from the point source (&0, m0) and
Q*=1-g— (a/43?)

For a wide range of subinertial frequencies, Q? = 1, so the
oceanic response decays exponentially from the point force
with an e folding distance equal to the radius of deformation.
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For frequencies close to the inertial frequency the e folding
distance becomes very large. This result, which is inconsistent
with the results in Figure 4, is correct for a constant density
fluid of depth 4, but the result needs to be interpreted with
caution if the fluid is stratified. What we in effect have done
here is to interpret the dispersion relation

gh = (0% — f2)/(k* + I* + Bk/o)

as an equation for (negative) values of k* + P2, after a positive
value for 4 had been specified. But we know from section D
that & can assume negative values for a stratified fluid. This
tells us that when the (vertical) modal description is used, care
must be taken to use a sufficiently large number of vertical
modes to describe the vertical structure. As the frequency
approaches the inertial frequency and the response becomes
more vertically trapped, a larger and larger number of vertical
modes are necessary. In the limit ¢ — f the modal description
breaks down. An approach such as that used in section B (see
Figure 4) may be more useful than an analysis based on
vertical modes.

In the limit of very large equivalent depths (¢ — 0) there are
only two classes of modes: inertia-gravity waves and Rossby
waves. (In the transition ¢ = ® to ¢ = 0 the Kelvin wave
becomes an inertia-gravity wave, and the Rossby-gravity wave
a Rossby wave [Longuet-Higgins, 1968; Golitzyn and Dikii,

1966]. The equivalent depth for the barotropic mode of the

oceans is large (e ~ 20), so it is unclear whether the gravest
modes will be identifiable as Kelvin and mixed Rossby-gravity
waves,

Figure 24 shows the latitudinal structure of the gravest
eastward propagating symmetric mode for ¢ = 10 and 100 as
calculated by Longuer-Higgins [1968]. It clearly resembles a
Kelvin wave. In the figures of Longuet-Higgins the gravest
antisymmetric mode is identifiable as a Rossby-gravity wave.

- Hence the gravest barotropic modes are therefore simjlar in

structure to the latitudinally gravest baroclinic modes. The
tidal forcing may excite these grave modes in ocean basins that
are sufficiently large (the Pacific Ocean).

F. EFFECTS OF COASTAL BOUNDARIES

There are two ways in which the effect of meridional coastal
boundaries can be taken into account. One approach is to
separate variables, as in section B, and to seek solutions to
LTE that satisfy the boundary conditions at the coasts. The
assumption that the solutions have the form e'** (or €'*%) must
then be abandoned. Moore [1968] and Longuet-Higgins and
Pond [1970] adopted this method. Alternatively, we can as-
sume that solutions do have the form e'**, as if the ocean were
unbounded. Reflected and coastally trapped waves, which are
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Fig. 24. The latitudinal structure 6f the barotropic equatorial Kelvin wave [after Longuet-Higgins, 1968).
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Fig. 25. (a) Structure of a normal mode of the ocean at a frequency close to o, (see (55)). The arrows denote coastally
trapped Kelvin waves [after Moore, 1968]. (b) Streamlines of a normal mode in a basin on a 8 plane, at frequencies much
less than a,. The dotted lines drift westward [after Longuet-Higgins, 1965].

necessary to satisfy boundary conditions at the coast, can then
be considered separately. ’

The vertical structure of the modes of a basin will of course
correspond to the vertical modes described in section E1. For a
certain range of frequencies centered on ao, where

o* = B(gh)"*/2 (53)

the horizontal structure of the modes is as shown in Figure
25a. (The frequency o, corresponds to the point of contact of
the shaded regions in Figure 20, and the horizontal dotted line
in Figure 26. Numerical values for ¢, are 2'/? times the values
given in Table 2.) According to Figure 25a the horizontal
structure of the modes of the basin consists of equatorially
trapped waves within a latitude band given by (50) or (52).
Poleward of this latitude the amplitude of the modes decays

exponentially except within a radius of deformation of the-

coast where Kelvin waves are possible. The gravest symmetric
mode can be thought of as a Kelvin wave that rotates counter-
clockwise, in the northern hemisphere, around the basin. The
period of this mode is essentially the time that it takes a Kelvin
wave to complete this route. In a flat-bottomed basin with
sufficiently large dimensions the diurnal tidal force will directly
excite a nondivergent Rossby wave (h = ®, s = —1). Because
of the meridional coasts, there will be additional waves similar
in structure to those in Figure 25a. (Equation (55) is approxi-
mately satisfied by the diurnal tide.) :

.For frequencies much lower (or higher) than g, the turning
latitude yr in Figure 25a is close to the pole, the role of coastal
Kelvin waves is unimportant, and the modes of the basin can
be described in terms of nearly nondivergent Rossby (or iner-
tia-gravity) waves. The structure of such a low-frequency basin
mode is shown in Figure 25b. The long-period tidal forces,
which have periodicities that are much longer than that im-
plied by (55), will excite waves with a structure not unlike that
shown in Figure 25b. The latitudinally gravest modes (such as
the one in Figure 25) will, however, also be important. These
grave modes are denied a role in Wunsch’s [1967] model of the
oceanic response to the long-period tidal forcing.

The reflection properties of equatorially trapped waves, of a
given baroclinic mode, at meridional coasts have been studied
by Moore [see Moore and Philander, 1976]. Waves, with meri-
dional wave number /, that are incident on a western boundary
reflect as a finite number of waves of lower meridional wave
number plus a Kelvin or Rossby-gravity wave (depending on
the symmetry of the incident wave). It follows that the re-
flected waves are at least as equatorially trapped as the in-

cident wave. Since the Kelvin and Rossby-gravity waves both
have eastward group velocities for all frequencies, they cannot
be excited at eastern boundaries which therefore have different
reflection properties. The finite number of waves reflected at
an eastern boundary again have lower meridional wave num-'
bers than the incident waves, but they are not sufficient to
satisfy the boundary condition u = 0 at the coast. In addition,
an infinite number of coastally trapped Poincaré waves are
necessary. At a large distance from the equator the sum of
these waves can be shown to represent a poleward propagat-
ing, coastally trapped Kelvin wave [Moore, 1968]. The e fold-
ing distance, with which the amplitudes of the Poincaré waves
decay from the coast, can be calculated from (46); it corre-
sponds to solutions that have imaginary values for k and is
shown in Figure 26. Except for small frequency ranges in the
neighborhood of points of zero zonal group velocity the coast-
ally trapped waves have an e folding distance equal to or less
than a radius of deformation. The meridional structure of each
of these coastally trapped modes is the corresponding Hermite
function. Hence the higher the latitude, the less important are
the gravest modes, and the more coastally trapped are the
waves. This is equivalent to saying that the e folding distance
of the amplitude of the coastal Kelvin wave is the radius of
deformation, which decreases with increasing latitude.

Outside the tropics there is a large gap between the inertial
period and the highest period of the free Rossby waves (1/a,
say). Forced waves, in this frequency range, that are incident
on a meridional coast will excite the coastally trapped waves,
but there will be no reflected waves. At the opposite extremes,
inertia-gravity waves reflect as inertia-gravity waves (when ¢
>> f,), and Rossby waves reflect as Rossby waves (when ¢ <<
&) [see Longuet-Higgins, 1964]. In neither case do coastally
trapped waves play an important role.

Philander [1977] has discussed the effect of a zonal (east to
west) coast on equatorial waves. This study may be relevant to
the Gulf of Guinea, where the coast approximately coincides
with the 5°N latitude circle.

The inclination of a coast to the meridian can determine
whether an incident forced wave gives rise to coastally trapped
waves or Rossby waves that propagate away from the coast.
The circle in Figure 27 is the dispersion diagram for Rossby
waves according to (37) in the limit ¢ << f, [see Longuet-
Higgins, 1964). A wave incident on a north-south coast will
reflect as a Rossby wave if its meridional wave number falls
between points A and B in Figure 27. To reflect as a Rossby
wave from a coast inclined at an angle o to the meridian, the
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meridional wave number of the incident wave must fall be-
tween points C and D. Hence if the forced wave has a meri-
dional wave number corresponding to point E, it will give rise
to coastally trapped waves along the inclined coast but to
Rossby waves in the case of a north-south coast. The reflection
of equatorial waves from a coast inclined to the meridian (as in
1 the case of the eastern coasts of Africa and South America) is
T yet to be studied.
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G. EFFECTS OF BOTTOM TOPOGRAPHY

The separation of variables described in section B is, with
the exception of certain special cases to be discussed shortly,
possible only if the ocean floor is flat. In the case of an
arbitrarily irregular ocean floor one can still proceed as in
section D and study the downward propagating waves as if a
radiation condition were appropriate at the bottom. The
waves reflected upward could then be investigated separately.
This approach is useful in the tropical Atlantic, for example,
where the enormous mid-Atlantic ridge scatters waves incident
on it (see section H1). Should the stratification be such that
most of the energy is reflected internally before the waves
reach the ocean floor, then it-may be justifiable to neglect the
topography altogether and to use the method of vertical baro-
clinic modes (see sections D1 and E).

Apart from its effect on waves incident on it, the topography
plays another important role: it supports certain types of wave
motion such as Stokes edge waves and topographic Rossby
waves for which it provides a restoring force. Rhines [1970] has
studied the effect of stratification on these waves when the
slope of the ocean floor is linear in y (latitude). The results are
summarized in Figure 28. For the frequency-wave number
range, where vertically propagating Rossby waves are pos-
sible, i.e., the shaded parts of Figures 17 and 28, the slope of
the ocean floor now permits vertical modes different in struc-
ture from those described in section E. In the frequency-wave

~number range, where previously, no freely propagating Ros-
sby waves were possible, i.e., the unshaded parts of Figures 17
and 28, it is now possible to have waves that propagate freely
in the horizontal. These waves, however, do not propagate
vertically; their amplitudes attenuate with increasing distance
from the ocean floor. The e folding distance is so large for long
westward propagating waves that they are essentially baro-
tropic. For short waves, and for long low-frequency eastward
propagating waves, the e folding distance is small, and the
waves are bottom trapped. (Eastward traveling waves are pos-
sible if the slope of the ocean floor negates the 3 effect.)

In a flat-bottomed ocean, large eastward traveling storms
force a nonresonant (and therefore a fairly mild) response. The
effect of these large storms penetrates to the ocean floor. It is
therefore possible for them to excite bottom-trapped waves
resonantly if the topography can support such waves. In other
words, topographic features can significantly alter the oceanic
response to forcing. Note that bottom-trapped waves with
short horizontal scales cannot be excited directly by small-
scale disturbances at the surface. The response to small storms
(fronts) is strongly trapped in the vertical.
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H. IMPLICATIONS
1. Equatorially Trapped Waves

The oceanic response to forcing can always be described in
terms of latitudinal modes (as in section D), but we do not
expect these modes to be established in the ocean except under
restricted conditions. For example, an atmospheric storm in
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Fig. 27. The circle is the locus of points that satisfy the dispersion
relation (equation (37)) when ¢ << f,. Its radius is [(8%/40%) —
(f*/gh)1'2. ; !

the vicinity of 30°N will excite inertial waves with a period of 1
day, but the latitudinal structure of these waves is unlikely to
correspond to a Hough function that spans the latitude band
30°N to 30°S. Disturbances near the equator, on the other
hand, are likely to excite the gravest equatorially trapped
modes. The equivalent depth A of a mode is a measure of its
latitudinal scale. The larger the value of A, the larger is the
latitudinal scale, and the less likely is the establishment of the
associated mode. Figure 13 shows that at high frequencies the
(latitudinally) gravest modes have large equivalent depths (ex-
cept for short Kelvin waves). This suggests that the equator is
unlikely to be a wave guide at high frequencies (except possibly

for Kelvin waves). At very low frequencies, on the other hand,
the gravest inertia-gravity waves and the Rossby-gravity wave
have small values for & and are strongly trapped about the
equator. Indeed, their latitudinal scales become so small that
the implied latitudinal shears are too large for these waves to
be stable. In the case of the Kelvin wave and gravest Rossby
wave there is at any low frequency a range of latitudinal scales
(that includes large values) associated with a range of zonal
wave numbers. It therefore appears that the equator can be a
wave guide at very low frequencies provided the disturbances
are not eastward propagating and antisymmetrical about the
equator.

The most detailed measurements of equatorially trapped
waves in the oceans thus far were made in the equatorial
Atlantic by Weisberg et al. [1977]. The kinetic energy spectra
suggest that fluctuations at periods of 2 days, 3-5.days, 10
days, and 2 weeks were particularly energetic. These oscilla-
tions were probably atmospherically induced, since there is
evidence of waves with similar periods in the atmosphere
[Orlanski and Polinsky, 1977; Burpee, 1974; Krishnamurti et al.,
1975]. The oceanic measurements show that at periods equal
to and longer than 3 days the velocity fluctuations have sym-
metry properties about the equator. See, for example, Figure
29b, which shows hodographs of band-pass-filtered data. The
structure of this 10-day oscillation is consistent with that of the
Rossby-gravity wave shown in Figure 29a. At periods of 2
days or less the observed oceanic fluctuations do not have
these symmetry properties about the equator. Hence the pe-
riod below which there do not seem to be equatorially trapped
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Fig. 28. Dispersion relation for bottom-trapped waves (in the unshaded region) and for ‘surface’ modes (in the shaded
region) as a function of nondimensional frequency (f, is the inertial frequency at 43°N) and wave number (L = 120 km) for
different values of the slope of the ocean floor (measured in units of 8H/f,). The insets show the vertical structure of the
waves. The dashed curves are Rossby waves (barotropic and first baroclinic mode) in the absence of topography. In Figure
28a (Figure 28b) the ocean floor slopes upward (downward) toward the poles and thus enhances (competes with) the 8

effect [after Rhines, 1970].
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Fig.29. (a) Velocity and pressure distribution in a horizontal plane for Rossby-gravity waves [after Matsuno, 1966]. (b)
Hodographs of the horizontal velocity components associated with a westward propagating Rossby-gravity wave which has
a period of 10 days. The measurements were made in the equatorial Atlantic by Weisberg et al. [1976] at a depth of 300 m.

waves is about 2} days. At the lowest resolvable frequencies,
on the other hand, the measurements of Weisberg et al. [1977]
had symmetry properties about the equator; this implies that
the gravest latitudinal modes are established at low frequen-
cies. As regards the vertical structure, measurements of veloc-
ity fluctuations at different depths on the same mooring show
consistent upward phase propagation (and presumably down-
ward energy flux). The measurements in the Atlantic therefore
suggest that equatorially trapped waves do exist but that verti-
cally standing modes are not established. The reason for this is
presumably the rough bottom topography of the equatorial

Atlantic that scatters waves incident on it. The mid-Atlantic

ridge passes through the region where the measurements were
made. The absence of vertical modes implies that the equator
in the Atlantic is not an efficient wave guide for the zonal
propagation of energy. (Energy propagates most efficiently
away from a localized forced region as a standing vertical
mode.)

There is reason to believe that the ocean floor is a better
reflector, and the equator a more efficient wave guide, in the
Pacific than in the Atlantic. Wunsch and Gill [1976] have
explained peaks, at 4 and 5.5 days, in sea level spectra from
islands in the Pacific Ocean as resonant equatorially trapped
first baroclinic mode inertia-gravity waves. According to these
authors the modes will be excited even if the spectrum of the
atmospheric forcing were white. In that case, waves that have
zero zonal group velocity will be the most energetic (because
their energy does not disperse). Wunsch and Gill [1976] assume
that the waves observed in the Pacific satisfy this condition.

Over the Atlantic and Pacific oceans there are atmospheric
waves with wavelengths of 2000-3000 km and periods of 3-5
days that propagate westward along the Intertropical Cori-
vergence Zone [Wallace, 1971; Burpee, 1974]. The peaks in the
spectra of the surface winds can, for prolonged periods, be
sharp at periods of 5 and 4 days. (See the sea surface wind and
pressure spectra in the paper by Wunsch and Gill [1976].) The
question therefore arises whether the 4- and 5.5-day oceanic
oscillations are not simply forced by the atmospheric waves.
Forcing at a period of 4 days and a wavelength of —3000 km

will, according to (28), excite an infinite set of inertia-gravity
waves with the following equivalent depths for the gravest
modes: i,* = 190, 80, and 44 cm. At a period of 5.5 days and a
wavelength of —3000 km the corresponding equivalent depths
are b,* = 65, 30, and 15 cm. (No Rossby waves are excited by
these disturbances, but a complete description of the response
must include modes for which 4 < 0.) The equivalent depth of
the first baroclinic mode for the central Pacific is in the neigh-
borhood of 70'cm. Hence at a period of 4 days the / = 2 mode,
and at a period of 5.5 days the / = 1 mode, could be resonantly
excited by the atmospheric waves. These are the modes that
Wunsch and Gill [1976] fit to the data, but they assert that the
zonal wavelength, rather than being determined by the forcing
function, corresponds to the zero zonal group velocity point
on the dispersion diagram. The nonresonantly forced latitudi-
nal modes, which are disregarded by Wunsch and Gill, will of
course also be excited. In the case of the 5.5-day oscillation
these other latitudinal modes will have a small effect on the sea
lével because of their small equivalent depths. In the case of
the 4-day wave, however, the / = | mode may have a signifi-
cant influerice on the sea level (because of its large equivalent
depth). It is noteworthy that the agreement between the ob-
served and the calculated structure of the / = 1, 5.5-day mode
is excellent, but in the case of the / = 2, 4-day mode the
agreement is not particularly good. Further measurements are
necessary to assess the importance of the nonresonant modes.
It will be interesting to know whether there are resonant 4- and
5.5-day modes in the Indian Ocean, because in that ocean
there are no known atmospheric waves with these periods.

2. Inertia-Gravity Waves

Measurements at practically all latitudes (poleward of about
4°N and 4°S) and at all depths in the oceans show evidence of
inertial currents that rotate (clockwise in the northern hemi-
sphere) at a rate of 2 sin (latitude) revolutions per day. This
motion is associated with a prominent spectral peak at (or very
near) the local inertial period. At the ocean surface there is a
high correlation between these waves and the winds [Pollard
and Millard, 1970], but this is not true at greater depths. The
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measurements of Sanford [1975] show that the inertial waves
have short vertical wavelengths. The spectra of energy as a
function of vertical wave number, which Sanford [1975] calcu-
lated, show considerably more energy propagating downward
than upward. It thus appears that the inertia-gravity waves
have a source at the ocean surface. Measurements in the deep
ocean show these waves to be intermittent and to have a
generation and decay time of a few days [Webster, 1968].

Several interesting properties of vertically propagating iner-
tia-gravity waves can be inferred from the dispersion diagram
(Figure 15). Waves with a period equal to the inertial period
have very short vertical wavelengths and zero vertical group
velocity. Such waves will be trapped near the ocean surface (if
they are excited there) so that measurements in the surface
layers will show a high correlation between the inertial waves
and the local winds. These waves will primarily be excited by
atmospheric storms with large horizontal dimension (see Fig-
ure 15). Smaller storms will excite inertia-gravity waves over a
wider range of frequencies, and even those waves with periods
close to the inertial period will have fairly large vertical group
velocities. Since they will also have small vertical wavelengths,
they will readily propagate across the thermocline into the
deep ocean. (Fomin and Yampolskiy [1975] describe measure-
ments of waves reflected by sharp gradients in the stratification
of the Black Sea.) I. Orlanski (unpublished manuscript, 1970)
came to the above conclusions from his study of the local
generation of inertia-gravity waves in the ocean. The solutions
in that paper show the waves in the deep ocean to be transient.
A packet of waves excited at the surface takes of the order of 5
days to reach a depth of 1000 m, and they disappear again
after approximately the same period of time. Simultaneous
measurements, over a period of several weeks, of the atmo-
spheric conditions and oceanic currents at several depths, are
necessary to confirm these predictions.

Locally generated inertia-gravity waves in the deep oceans

must, according to Figure 15, have frequencies strictly greater
than the inertial frequency. (Webster [1968, caption to Figure
4] notes that the spectral peak of one of his near-bottom
records is at a period nearly an hour less than the inertial
period.) These waves will propagate vertically and horizon-
tally. Latitudinally, they can only go as far as their inertial
latitude, where the meridional group velocity will vanish.
Waves, with a period equal to the inertial period, in the deep
ocean could therefore be due to randomly distributed sources
at lower latitudes [Munk and Phillips, 1968). (See also Kroll
[1974], who uses ray theory to study these waves.) There is no
‘reason why nonlocally generated inertia-gravity waves should
have more energy propagating downward than upward. The
measurements of Sanford [1975] therefore imply that the
global generation of these waves is not of great importance in
the region where the measurements were made. There may of
course be other regions where nonlocally generated waves are
important. Figure 3, which shows the characteristics along
which the waves propagate, explains why local generation may
be important in some regions but not in others. According to
this figure the higher the frequency of the waves, the more
vertical their characteristics and the larger the number of
reflections, at the ocean floor and the ocean surface, between
the generation region and the inertial latitude. If the ocean
floor is very rough, as it is in the tropical Atlantic, for example,
then these waves will be scattered, possibly into shorter waves
that will be dissipated. Even under favorable conditions the
albedo of the ocean floor cannot be assumed to be 100%, so
that a large number of reflections implies a considerable loss of

energy. We conclude that the global generation of inertia-
gravity waves is most likely to contribute significantly to the
inertial peaks in the spectra in low-latitude areas that have a
featureless ocean floor. Measurements at 15°N and 15°S will
be particularly interesting because the tropical atmospheric
waves with a period of 2 days (see section H1 above) should
cause an unusually large spectral peak at the inertial period (2
days), at those latitudes, if the global generation mechanism is
important.

3. Midocean Eddies

This term refers to unsteady oceanic motion at subinertial
frequencies. In this section we investigate the extent to which
atmospheric forcing can be a source of eddy energy.

At frequencies slightly lower than the inertial frequency the
oceanic response to forcing can be described in terms of modes
for which the equivalent depth has small negative values. (See
(37) and Figure 17.) This implies that the oceanic response at
these frequencies. is strongly trapped near the surface, as is
shown in Figure 6. As the frequency decreases, the values of
—h increase rapidly so that energy levels at all depths in the
ocean increase with decreasing frequency. (It is assumed that
the scale of atmospheric disturbances does not decrease rap-
idly as the frequency decreases.) This qualitative description of
the oceanic spectrum at subinertial frequencies is consistent
with measurements. A quantitative comparison, to determine
whether predicted energy levels agree with measurements, re-
quires_ detailed information concerning the spectrum of the
forcing function. Such information will also permit an assess-
ment of the role of nonlinear processes. Thompson [1971] and
Rhines [1973] have suggested that the iricrease in energy levels
at depth as the frequency decreases below the inertial fre-
quency may be attributable to a nonlinear (two dimensionally
turbulent) cascade of energy from lower frequencies.

Fluctuations in the surface winds in mid-latitudes and high
latitudes are most energetic in the frequency band from 2 to 10
days. This range of periods is associated with eastward travel-
ing cyclones (synoptic disturbances) which have a scale of the
order of 5000 km [Willebrand, 1977; Byshev and Ivanov, 1969].
The oceanic response to this forcing can be described in terms
of modes for which the equivalent depth has large negative
values. (See Figure 17.) It follows that the effect of the forcing
will penetrate to the ocean floor (see Figure 6) and that a
description in terms of vertically standing modes will require
little more than the barotropic and first baroclinic mode. The
method of solution outlined in section D gives an estimate of
the amplitude of the fluctuations induced by these large atmo-
spheric storms. Let us idealize the situation by assuming a
sinusoidal time dependence with a period of 7 days, an east-
west scale of +5000 km, and a wind stress amplitude of 1 dyn.
If the latitudinal structure of the forcing corresponds to the
gravest. Hough function for a mid-latitude ocean 5000 km in
latitudinal extent, then the oceanic response is practically
depth independent and has an amplitude of the order of 2
cm/s. (The flat-bottomed ocean is assumed to be 4 km deep
and to have a stratification N = 4 X 1072 s71))

There have been several measurements that show a correla-
tion between local atmospheric disturbances and velocity fluc-
tuations in the deep ocean: in the Drake Passage [Baker et al.,
1977]; along the ridge between Scotland and Iceland in the
northern Atlantic (J. Meincke, unpublished manuscript, 1975);
and near seamounts east of Bermuda [Taylor et al., 1977]. The
depth of penetration of the response to the storms is in accord
with the analysis of section D, but the observed amplitudes of
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the oceanit fluctuations were often much larger than that
calculated above. J. Meincke (unpublished manuscript, 1975),
for example, measured speeds. of up to 30 cm/s. The most
obvious explanation for this discrepancy between the observa-
tions and the theory is the neglect of the bottom topography in
the analysis of section D. In a flat-bottomed ocean, large
energetic eastward traveling storms force the ocean non-
resonantly—no free waves are excited—so that the amplitude
of the response is relatively small. Should the foré¢ing be in a
frequency-wave number range where free waves can be ex-
cited, then one expects the response to be more vigorous. The
topography of the ocean floor introduces a new class of free
waves in a frequency-wave number range where previously, no
free waves were possible. (See section G.) The baroclinic topo-
graphic waves are trapped near the ocean floor. Hence they are
efficiently excited by forcing that penetrates deep into the
ocean, such as the forcing by large eastward traveling cyclones
in mid-latitudes and high latitudes. It is intriguing that an
analysis of hydrographic sections in the Southern Ocean sug-
gests higher levels of eddy energy, and shorter length scales for
the eddies, in regions of rough topography than in flat regions
(D. J. Baker and J. Lutjeharms, unpublished manuscript,
1977). Further studies of the effect of bottom topography on
the forced oceanic response are clearly necessary. At this stage
we note that bottom topography will affect both the frequency
and the wave number spectra of the oceanic response because
the topography will scatter the forced large-scale motion into
smaller eddies and because the topography can support a new
class of waves.

The large eastward traveling storms in mid-latitudes and
high latitudes are the most distinctive features of the atmo-
spheric forcing function, To calculate the oceanic response to
forcing at lower frequencies and to determine whether or not
Rossby waves are excited, for example, it is necessary to know
the frequency and the wave number spectra of the forcing.
Information of this type is becoming available now.

4. Free Waves Excited by Unstable Currents

Although there has been speculation that even weak cur-
rents in the interior of the ocean are baroclinically unstable,
only certain intense boundary currents, and some of the zonal
equatorial currents, are known to be unstable. These currents
are all narrow jets, some of which are confined to the surface
layers of the ocean. It is of interest to know whether free waves
can radiate energy away, in horizontal and vertical directions,
from these geographically small regions of instability. The
following remarks are valid if the effects of advection can be
neglected in regions distant from the currents. .

Inferences concerning the horizontal propagation of non-
locally forced disturbances can be made from Figures 22 and
23. It is evident that barotropic modes with a period of about 1
week or more can readily propagate between high-latitude
circles. Baroclinic modes, which have small equivalent depths,
can propagate freely in low latitudes only. Thus instabilities of
the Florida Current, which have a wavelength of about 120 km
and a period of approximately 1 week [Rao et al., 1971], will
force baroclinic variability in the oceans that is confined to the
immediate neighborhood of this current. Beyond Cape Hat-
teras, unstable Gulf Stream meanders have a period of about 3
weeks [Hansen, 1970], but that is still too short a period for the
generation of baroclinic modes that propagate away from the
Gulf Stream.

Recent satellite photographs of the sea surface temperature
in the centra: equatorial Pacific show westward propagating

undulations, with a wavelength of 1000 km and a period of 25
days, along the front between the cold South Equatorial Cur-
rent and warm North Equatorial Countercurrent [Legeckis,
1977]. These waves are probably due to a shear instability of
the above mentioned surface currents. In the deep ocean (be-
low the surface layers) the oscillations will excite vertically
propagating equatorially trapped waves. The gravest mode to
be excited is a mixed Rossby-gravity wave with an equivalent
depth of about 30 cm. Though its phase speed is westward, it
has an eastward group velocity. Hence, even though the waves
in the surface layers are observed west of 100°W only, fluctua-
tions with a similar period and wavelength are possible in the
deep ocean much further east. This is proposed as an ex-
planation for the measurements by Harvey and Patzert [1976],
who observed oscillations with these scales near the ocean
floor near the Galdpagos Islands (at 92°W). Despite their long
period these 25-day disturbances will not propagate far latitu-
dinally (see Figure 22).

I. DiscussiON

We have described two representations for the response of
the ocean to forcing at a given frequency and zonal wave
number. These methods of solution have severe limitations
because they involve either vertical or latitudinal modes. For
example, neither method is particularly useful in studying the
generation of inertia-gravity waves by a mid-latitude atmo-
spheric storm. These waves will have short vertical wave-
lengths, so the use of vertical modes is inconvenient, and there
is obviously little virtue in using equatorially trapped modes to
describe the latitudinal structure. Ray theory [see Kroll, 1974]
offers a more reasonable approach. The methods of solution
described here are also inconvenient in solving initial value
problems, especially if the time scale of interest is short in
comparison with the time that it takes for the vertical or
latitudinal modes to become established. In the case of the
vertical modes a disturbance has to propagate from the mixed
surface layer (where the forcing takes place) to the ocean floor
and back to the surface before a standing mode can be said to
exist. The manner in which latitudinal modes are established
can be inferred from (B14). If we assume that the flow is x
independent, then this equation is hyperbolic and has charac-
teristics y + ct, where ¢ = (gh)"/2. Thus in an initial value
problem a front propagates poleward from the equator at
speed c.. Hence the inertia-gravity modes shown in Figure 11
exist only after the front has passed the turning latitude (say)
of the modes. (Rossby modes are established in a more com-
plicated manner because x dependence must be retained.) In
equatorial regions the gravest latitudinal modes are estab-
lished rapidly because the north-south extent of the forcing
function is comparable to the meridional scale of the modes.
The vertical scale of the forcing function, in other words, the
depth of the mixed surface layer, is very small in comparison
to the depth of the ocean, so the vertical modes take much
longer. It is for this reason that we see vertically propagating
latitudinal modes in the equatorial oceans.

The modes associated with negative values of 4 are not
solutions of the homogeneous (unforced) equations of motion.
It is therefore of no special significance that these modes are
trapped at the poles. This merely implies that these modes are
more convenient to use in the study of polar regions than in
equatorial regions. An oceanic response that is confined to the
immediate vicinity of the forcing region is of course possible in
equatorial regions. (Consider, for example, x-independent
forcing at a low frequency over a narrow latitudinal band
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centered on the equator.) It is not practical to describe this
response in terms of modes which have their largest amplitude
near the poles. However, because these modes are not solu-
tions of the homogeneous equations, one can introduce zonal
boundaries at some arbitrary latitude (20°N for the example
just cited) and use the A < 0 modes that correspond to this
zonal channel.

For the solution of initial value problems the method in
terms of vertically standing mades has a decided advantage
because the depth dependence can be eliminated from the
problem without making assumptions about the time depen-
dence. (See (B14).) This method becomes impractical if the
oceanic response is trapped near the surface.

The effects of mean currents with horizontal or vertical
shears have been neglected in this study, but they could be of
considerable importance especially in the tropics, where there
are strong surface and subsurface currents. There is good
agreement between linear theory and the observed equatorially

trapped waves described in section H1, because the phase

speeds of the waves greatly exceed those of the currents. More
slowly propagating waves could be significantly affected by the
currents, particularly so if their phase speeds should equal the
current speed at some point. Such critical layers will prevent
the establishment of modes. These problems have been studied
extensively in the meteorological literature and have been con-
veniently summarized by Holton [1975]. ;

J. SuUMMARY

This paper concerns the linear response of the ocean to
forcing at a frequency ¢ and zonal wave number k in the
absence of mean currents.

Figure 5 summarizes the importance of different terms in the
forcing function as the period and wavelength of the forcing
varies: the curl of the wind stress (4) is most important at low
frequencies and large scales; pressure fluctuations (E) play a
crucial role at small scales and high frequencies, so atmo-
spheric fronts could effectively excite inertia-gravity waves.

The equations of motion are hyperbolic equatorward of the
inertial latitudes that correspond to the given frequency o. In
this latitude band, disturbances propagate along character-
istics shown in Figure 3. Outside this latitude band the equa-
tions are elliptic, and their properties depend on the sign of the
quantity

g =k*+ Bk/o

If ¢ < 0 (in the shaded parts of Figures 2, 4, and 17), then an
unbounded mid-latitude ocean with constant stratification re-
sponds to forcing at a point with radiating cylindrical (in y and
z) Rossby waves. If ¢ > 0 (in the unshaded parts of Figures 2,
4, and 17), then the oceanic response decays exponentially
with increasing distance from a point force. Attenuation is
most severe at frequencies slightly less than inertial, at high
wave numbers, and at very low frequencies for positive values
of k.

For a bounded ocean with arbitrary stratification the equa-
tions of motion can be solved by a separation of variables. The
.two equations thus obtained are Laplace’s tidal equation for
the latitudinal structure (equation (10)) and a vertical struc-
ture equation (equations (8) or (16)). LTE can, for certain
ranges of the parameters, be simplified considerably by mak-
ing @ plane approximations. The eigenvalues thus obtained
agree well with the accurate computations of Longuet-Higgins
[1968]. The constant of separation, referred to as the equiva-
lent depth A, can be determined from either LTE or the vertical

structure equation. Two different mathematical representa-
tions of the (unique) solution are therefore possible.

One description of the oceanic response is in terms of its
normal modes. The vertical structure of the normal modes is
the barotropic and baroclinic modes, which are the eigenfunc-
tions of the homogeneous vertical structure equation and
boundary conditions. Tables 1 and 2 give typical values for the
equivalent depths (which are always positive). Figure 19 shows
typical vertical structures of the eigenfunctions. To solve the
forced problem, it is necessary to project the forcing function
(which is assumed to be separable) onto the complete set of
vertical modes. It then remains to solve an inhomogeneous
version of LTE with A specified. This may be done by solving
the homogeneous LTE as an eigenvalue problem, the fre-
quency o being the eigenvalue. The set of latitudinal eigenfunc-
tions thus obtained is complete and can be interpreted as
Rossby and inertia-gravity waves. The solution is of course an
infinite sum of such eigenfunctions and may not be a wave at
all. The solution in terms of the natural vertical modes is
convenient if the forcing is nonlocal, because only these modes
can propagate into an undisturbed region. The principal result
is that it is extremely difficult for baroclinic (but not baro-
tropic) disturbances to propagate horizontally away from the
forced region. Instabilities of the Gulf Stream, for example,
excite disturbances that are confined to the immediate vicinity
of this current; disturbances due to instabilities of equatorial
currents do not propagate far latitudinally.

A second description of the oceanic response to forcing is in
terms of vertically propagating (or trapped) latitudinal modes.
These modes are eigenfunctions of LTE when the eigenvalue is
the equivalent depth 4 (and not the frequency ¢ as before). For.
completeness, both positive and negative values of 4 are neces-
sary. It is evident from (1) that A > 0 implies a wavelike
vertical structure; # < 0 implies an amplitude that attenuates
vertically. The A > 0 modes fall into two groups: a finite
number of Rossby waves if the forcing is such that ¢ < 0 and
an infinite number of inertia-gravity waves. The gravest modes
are equatorially trapped and have been observed in the Atlan-
tic and Pacific. Higher-order inertia-gravity waves have
smaller equivalent depths and decay exponentially poleward of
their inertial latitude. The higher-order Rossby modes have
longer equivalent depths than the gravest modes and extend
further poleward. Section D1 concerns the effects of variable
stratification on these vertically propagating waves. If A ~ 1
cm or less, then the vertical wavelength is so short in regions of
high stability (such as the thermocline) that the waves are
likely to break or be unstable. At any rate, the establishment of
vertically standing modes is unlikely if # ~ 1 cm or less. If A ~
20 cm or more and if the ocean floor is reflective, then verti-
cally standing modes are likely. Internal reflection in strong
thermoclines can reduce the role of reflection from the ocean
floor in the establishment of the modes. The vertical structure
of mid-latitude inertia-gravity waves, which have small values

" for h, will correspond to vertically propagating waves rather

than to standing modes. Mid-latitude Rossby waves, on the
other hand, will be in the form of standing modes (unless their
frequency is very low). The insets in Figure 17 summarize
these mid-latitude results.

Figure 6 shows the effect of .variable stratification on 2 < 0
modes. The latitudinal eigenfunctions are exponentially decay-
ing equatorward of a turning latitude so that the gravest of
these modes are trapped at the poles. This is not of any
physical significance; it merely means that these modes provide
a useful description in polar but not equatorial regions (where
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an oceanic response that decays exponentially away from the
forcing region is also possible). Figure 17 shows the vertical
attenuation as a function of the frequency and zonal wave
number of the forcing, in mid-latitudes. Of particular interest
is the great depth of penetration of forcing due to a series of
large-scale eastward traveling cyclones such as the ones that
are common in mid-latitudes and high latitudes.

The effect of meridional coasts depends on the frequency.
For frequencies close to o, as defined in (55) (see Table 2 for
numerical values), the coasts reflect a finite number of equa-
torially trapped waves (possibly none) which decay ex-
ponentially poleward of a latitude yr, which is defined in (50).
Poleward of yr the only effect of the coast is to introduce
coastally trapped Kelvin waves. Their e folding distance from
the coast is the radius of deformation. At frequencies much
lower than o, the coasts reflect the nearly nondivergent Rossby
waves as Rossby waves, and coastal Kelvin waves are unim-
portant. At frequencies much higher than ¢,, nearly irrota-
tional inertia-gravity waves are reflected as inertia-gravity
waves, and coastal Kelvin waves are again unimportant.

The topography of the ocean floor introduces waves that
propagate freely in the horizontal in a frequency-wave number
range where no free waves are possible if the ocean floor is flat.
These topographic waves have amplitudes that attenuate with
increasing distance from the ocean floor. They can therefore be
excited only by a forcing that penetrates to the ocean floor. It
follows that the oceanic response to large eastward traveling
cyclones in mid-latitudes and high latitudes can be drastically
altered by the topography of the ocean floor.

APPENDIX A: HERMITE FUNCTIONS
The equation '

Yyy + Qv+ 1 -y =0

has solutions that are bounded at large values of y only if » is

an integer. These solutions can be written

¥ = (=lye” I‘fﬁe‘y’) =G (y)

=1 G, =2 =4y? — 2
G, 1 Y G, 4 (A1)
Gy =8 — 12y G, = 16y* — 48y + 12
G5 = 32y°® — 160y® + 120y
‘Note that
d/dy)G, = 2G,_, (A2)
va =G, + MV+1 (A3)
f G G eV dy = bpn 2l (A4)
APPENDIX B: APPROXIMATIONS TO. LAPLACE’S
TiDAL EQUATIONS
Laplace’s tidal equation for pressure perturbations is
L(P)—eP =0 (B1)

where
1 a | 1
L\—' Asin @ {W [)\’ — cos? 6 (s cos 0

g . a ) As o
Asing ae)] x A2 — cos?d (sin0 it 0%)}

An equivalent equation, but for the meridional velocity com-
ponent, is

I:(AV2 —§) + eA(A2 — u?)

oW o ] 3
2 — (1 — “2)0‘0 sp) | v* =0 (B2)
where
u = cosf D = (1 — u?)d/du)
v d 52 Lo (B3)
—d#D-——l-—-::,- V* = iVsind

A detailed discussion of metnods of solution for these equa-
tions, and graphs and tables of the eigenfunctions and eigen-
values for a wide range of frequencies o, equivalent depths e,
and wave numbers s or k can be found in the paper by
Longuet-Higgins [1968]. Flattery [1967] has calculated the set
of Hough functions and equivalent depths for the cases (¢ =
20, s = —2) and (¢ = @, s = —1) that are relevant to
atmospheric tides [see Chapman and Lindzen, 1970].

If we regard the positive equivalent depth 4 and zonal wave
number s or k as specified, then a series of eigenfrequencies o,
can be calculated from (B1) or (B2). Let ¥, denote the associ-
ated eigenfunctions. All these functions are sinusoidal equa-
torward of a turning latitude and exponentially decaying pole-
ward of that latitude. For large values of € the gravest (/ ~
0O(1)) modes are equatorially trapped, but the higher-order
modes (/ >> 1) extend further and further poleward. For small
values of e the turning latitude of all the modes is close to the
poles, and the eigenfunctions are sinusoidal over the entire
globe.

If, on the other hand, the values of the frequency and zonal
wave number are specified, then a series of eigenvalues ¢, can
be calculated from (B1) or (B2). For the associated eigenfunc-
tions ¥, to form a complete set, both positive and negative
values of ¢, are necessary. The modes associated with negative
values of e are sinusoidal poleward of a turning latitude and
exponentially decaying equatorward of that latitude. The op-
posite is true for the modes associated with positive values of e:
they are sinusoidal (exponentially decaying) equatorward
(poleward) of a turning latitude. These modes can be sub-
divided into two -groups: an infinite set of inertia-gravity
modes for which the turning latitude is the inertial latitude for
the frequency under consideration and a finite number of
Rossby waves that have turning latitudes that increase as /
increases or as e decreases.

For the parameter values for which the modes are either
equatorially trapped (e >> 1 and / ~ O(1)) or global (e ~ O(1)
or / >> 1), Laplace’s tidal equations can be approximated by
simpler equations.

Spheroidal Wave Equation

For small values of e or large values of s, (B2) can be
simplified to the spheroidal wave equation

AV2 — s + eA(\? — u))]V* = 0 (B4)

This equation is accurate for a description of high-order latitu-
dinal modes that extend into mid-latitudes [Longuet-Higgins,
1965]. It can also be used to approximate the gravest latitudi-
nal modes when their equivalent depths are large [Dickinson,
1968]. Kamenkovich and Tsybaneva [1975] have studied ap-
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proximate solutions to (B4). A discussion of the solution to
this equation, and tables for the computation of the eigenfunc-
tions and eigenvalues {S,*(x), 4,°}, can be found in the work of
Abramowitz and Stegun [1965], where further references are
given. The spheroidal wave functions S,° have exactly n — s
zeros so that the index (meridional wave number) / may be
identified with n — s. For low values of n — s and large values
of €, S,* can be approximated by the Hermite functions de-
scribed above. If S,,® has a turning latitude (where its behavior
changes from sinusoidal to exponentially decaying as 6 de-
creases), then its behavior there can be approximated by Airy
functions [Longuet-Higgins, 1965; Munk and Phillips, 1968;
Stewartson and Walton, 1976].
Write

V = (sin 0)"2V*

Then (BZ) can be written
a2V
do?

The statement made in (52) follows from this equation.
There is one set of parameter values for which (B2) canno.
be simplified to (B3), namely,

ea? ~ s?

—[(ﬁ—})cosec’0+ecos’0+—;—}j|17=0

<1

In this exceptional case the equations have the solution

V = ipe~ V" (B5a)
U = (2/s)e¥/ e~V (B5b)
"= e | (BSc)
A = (s/€2) + (s/4¢) + O(e~*2) (BSd)

This solution corresponds to a Kelvin wave on a sphere [Long-
uet-Higgins, 1968]. . .

The approximations related to the spheroidal wave equation
are valid provided ¢/n? ~ O(1). We next consider further ap-
proximations, valid when ¢/n? << 1.

Associated Legendre Functions

For high-order latitudinal modes (/ >> 1) and any equiva-
lent depth (any value of ¢) or for small values of ¢ and any
value of / we recover the solutions originally discovered by
Hough [1898; also Dikii, 1965]. This limit is relevant to global
(as opposed to equatorially trapped) phenomena. It is conve-
nient to introduce a stream function ¥ and potential $:

is & — ov

U= sin 0 96 (Bba)
od is
V'="%8 " Snod (B6b)

The modes with positive equivalent depths fall into two
groups. Class I, irrotational inertia-gravity waves, is described
by

® ~ P, (n) (B7a)
¥ =0 (B7b)
o = [n(n + 1)gh/a]'? (B7c¢)

Here P,'*!(u) is the associated Legendre polynominal of degree
n and order s. Since dP,'*'/du has (n — |s| + 1) zeros, except

when s = 0, in which case it has n — 1 zeros, we can relate the
meridional wave number / to n as follows:

I=n—-s+1 |21
s=0

(B8a)
(B8b)

The dispersion relation (equation (B7c)) agrees with (B5d)
because the Kelvin wave simply becomes an inertia-gravity
wave when € — 0. In general, P,'*' is sinusoidal equatorward of
the turning latitude and exponentially decaying poleward of
that latitude. For large n this latitude is practically at the poles
[Longuet-Higgins, 1964].

The other (class II) solutions that can readily be obtained
when ¢ — 0 correspond to Rossby waves:

=n-1

®=0

(BY9a)
¥ = P,*(u) (B9b)
s n? — s

__.;—n(n+l)+e ————(4’1,_1)”2 |
| w(n+ 1= s)n+1+s)
2T D+ 3+ 1)y ] + - (B9)

so that / = n — |s|. These nondivergent low-frequency waves
have been discussed in detail by Longuet-Higgins [1964, 1965].
Figure 2, which has plots of (B9¢) for/ — 0,/ — 1,/ — 2,and/
— 3 in the limit ¢ = 0, shows the maximum frequency, as a
function of zonal wave number, for the gravest Rossby modes
on a sphere. The curve for the mode / = 0 coincides with the
expression in (36) if 8 is evaluated at the equator and if s >> 1.

B Planes

Expand the trigonometric functions in (1) in Taylor series
about a reference latitude v/2 — 6, and write

y = a0 — 6,) (B10)

Then equations (1) can be reduced to the single equation
0? o?
(ﬁ * 57)" A

o1 @ _
+ E-Z‘[—"‘N,az(vm + fot)] =F (B11)

x = a¢ sin 6,

where 8 = 2Q sin 6,/a and the Coriolis parameter is the
following:

In the tropics
f=8y (B12)
Outside the tropics
f=2Qcos b, + By =fo + By (B13)

(The validity of these approximations will be discussed
shortly.) After separation of variables the horizontal structure
is described by the equation

. T |
(Vax + Vyy)e + BV — Ei’-Vm'— -5;17, =0 (B14)
or, if we write ¥V = V(p)eilkx—a1), by
o e Bk _ f_) -
Vyy + (gh k== o V=0 (B15)

For an equatorial 8 plane, where f = 8y, this equation can
also be derived from (B4) without introducing higher-order
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approximations. Thus in the tropics, (B15) is as accurate an
approximation to (B2), as is (B4). It provides a very accurate
description for equatorially trapped waves (for which e is
large).

The mid-latitude 8 plane with f given by (B13) can also
formally be derived from (B3). (There are of course severe
restrictions on the latitudinal distances over which the approx-
imations are valid.) Equation (B15) becomes considerably eas-
ier to solve if f has a constant value, f,. There are two limits in
which this approximation is justifiable.

1. If we consider low-frequency motion with time and
length scales L and T such that

BL 1
fo <1 Ff <1
but

BL/fo ~ 1/Tf,.

and if we assume that L is comparable to the radius of defor-
mation Lg = (gh)"*/f,, then (B14) and (B15) simplify to

(Vxx + Vyy)t + ﬂVx - (foﬂ/gh)V =0 (Bl6a)
(i + 8% f_) 5
( +a‘ +gh V=0 _(B16b)

These quasi-geostrophic approximations, which assume that
the zeroth-order flow is nondivergent and in geostrophic bal-
ance [Phillips, 1963] filter out inertia-gravity waves.

2. If we consider motion with a time scale comparable to
the inertial period

1 ﬁL (gh)1/2
—=~0(1 -— <1 L~ B17
7~ o7 T &1
then the simplified equations are
Ve + Vi) = v = L0, =0 BIS
xx yy)t gh tet gh t = ( a)
and
Vyy + ( YRR )V 0 (B18b)
¥ gh h :

The Rossby waves have now been filtered from (B14) and
(B15).

It is inconsistent to retain all the terms in (B14) and (B15)
and also to regard f as a constant (fo)- Such an approximation
is sometimes made and is accurate in the high- and low-
- frequency limits.

NoTATION

radius of the earth.
Coriolis parameter, which equals 2 cos 6.
gravitational acceleration.
equivalent depth.
depth of the ocean.
zonal wave number.
meridional wave number.
vertical wave number.
Brunt-Viiséld frequency.
pressure.
ak sin 6, which equals nondimensional (spherical)
zonal wave numbers.
t time.
(u,v,w) eastward, northward, and upward velocity com-
~ L onents.

ws Z2I L xWxo s

(x,y,2) eastward, northward, and upward coordinates.
B = (2Q/a) sin 6.
¢ = 4Q%%/gh.
§  colatitude.
A =a/2Q.
u = cosé.
p  density.
¢ frequency.
= wind stress vector.
¢ longitude.
Q rate of rotation of the earth.
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